simplify_recursive_definition.ml 5.71 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2010-                                                   *)
(*    Francois Bobot                                                      *)
(*    Jean-Christophe Filliatre                                           *)
(*    Johannes Kanig                                                      *)
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Ident
open Ty
open Term
open Theory


type seen =
  | SNot
  | SOnce
  | SBack

let rec find h e = 
  try
    let r = Hid.find h e in
    if r == e then e 
    else 
      let r = find h r in
      Hid.replace h e r;
      r
  with Not_found -> e

let union h e1 e2 = Hid.replace h (find h e1) (find h e2)

let connexe (m:Sid.t Mid.t)  = 
  let uf = Hid.create 32 in
  let visited = Hid.create 32 in
  Mid.iter (fun e _ -> Hid.replace visited e SNot) m;
  let rec visit i last = 
    match Hid.find visited i with
      | SNot -> 
          Hid.replace visited i SOnce;
          let s = Mid.find i m in
          let last = i::last in
          Sid.iter (fun x -> visit x last) s;
          Hid.replace visited i SBack
      | SOnce ->  
          (try 
             List.iter (fun e -> if e==i then raise Exit else union uf i e) last
           with Exit -> ())
      | SBack -> ()
  in
  Mid.iter (fun e _ -> visit e []) m;
  let ce = Hid.create 32 in
  Mid.iter (fun e es -> 
              let r = find uf e in
              let rl,rs,rb = try
                Hid.find ce r
              with Not_found -> [],Sid.empty, ref false in
              Hid.replace ce r (e::rl,Sid.union rs es,rb)) m;
  let rec visit (l,s,b) acc =
    if !b then acc
    else
      begin
        b := true;
        let acc = Sid.fold (fun e acc -> 
                              try 
                                visit (Hid.find ce e) acc
                              with Not_found -> acc) s acc in
        l::acc
      end
  in
  Hid.fold (fun _ -> visit) ce []



let elt d = 
  match d.d_node with
    | Dprop _ -> [d]
    | Dlogic l -> 
        let mem = Hid.create 16 in
        List.iter (function
                     | Lfunction  (fs,_) as a -> Hid.add mem fs.fs_name a
                     | Lpredicate (ps,_) as a -> Hid.add mem ps.ps_name a
                     | Linductive (ps,_) as a -> Hid.add mem ps.ps_name a) l;
        let toccurences acc t = 
          match t.t_node with
            | Tapp (fs,_) when Hid.mem mem fs.fs_name -> 
                Sid.add fs.fs_name acc
            | _ -> acc in
        let foccurences acc f =
          match f.f_node with
            | Fapp (ps,_) when Hid.mem mem ps.ps_name -> 
                Sid.add ps.ps_name acc
            | _ -> acc in 
        let m = List.fold_left 
          (fun acc a -> match a with 
             | Lfunction (fs,l) -> 
                let s = match l with
                  | None -> Sid.empty
109 110
                  | Some fd -> 
                      f_fold_trans toccurences foccurences Sid.empty fd in
111 112 113 114
                Mid.add fs.fs_name s acc
             | Lpredicate (ps,l) -> 
                let s = match l with
                  | None -> Sid.empty
115 116
                  | Some fd -> 
                      f_fold_trans toccurences foccurences Sid.empty fd in
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                Mid.add ps.ps_name s acc
             | Linductive (ps,l) -> 
                let s = List.fold_left 
                  (fun acc (_,f) -> f_fold_trans toccurences foccurences acc f)
                  Sid.empty l in
                Mid.add ps.ps_name s acc) Mid.empty l in
          let l = connexe m in
          List.map (fun e -> create_logic (List.map (Hid.find mem) e)) l
    | Dtype l -> 
        let mem = Hid.create 16 in
        List.iter (fun ((ts,_) as a) -> Hid.add mem ts.ts_name a) l;
        let tyoccurences acc t = 
          match t.ty_node with
            | Tyapp (ts,_) when Hid.mem mem ts.ts_name ->
                Sid.add ts.ts_name acc
            | _ -> acc in
        let m = List.fold_left 
          (fun acc (ts,def) -> 
             let s = match def with
               | Tabstract -> 
                   begin match ts.ts_def with
                     | None -> Sid.empty
                     | Some ty -> ty_fold tyoccurences Sid.empty ty
                   end
               | Talgebraic l -> 
                   List.fold_left 
                     (fun acc {fs_scheme = tyl,ty} ->
                        List.fold_left 
                          (fun acc ty-> ty_fold tyoccurences acc ty) acc (ty::tyl)
                     ) Sid.empty l in
             Mid.add ts.ts_name s acc) Mid.empty l in
        let l = connexe m in
        List.map (fun e -> create_type (List.map (Hid.find mem) e)) l

let t = Transform.TDecl.elt elt
152 153 154 155 156

let t_use = Transform.TDecl_or_Use.elt 
  (function 
     | Decl d -> List.map (fun d -> Decl d) (elt d) 
     | Use _ as u -> [u])