blocking_semantics3.mlw 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

23
(** ident for mutable variables *)
24 25
type mident

26
(** ident for immutable variables *)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
type ident = {| ident_index : int |}

(** Terms *)
type term_node =
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term

with term = {| term_node : term_node;
               term_maxvar : int;
             |}

predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
  | {| term_node = Tvalue _ |} -> false
  | {| term_node = Tvar i |} -> x=i
  | {| term_node = Tderef _ |} -> false
  | {| term_node = Tbin t1 _ t2 |} -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
  end

predicate term_inv (t:term) =
  forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar

function mk_tvalue (v:value) : term =
   {| term_node = Tvalue v; term_maxvar = -1 |}

lemma mk_tvalue_inv :
   forall v:value. term_inv (mk_tvalue v)

function mk_tvar (i:ident) : term =
   {| term_node = Tvar i; term_maxvar = i.ident_index |}

lemma mk_tvar_inv :
   forall i:ident. term_inv (mk_tvar i)

function mk_tderef (r:mident) : term =
   {| term_node = Tderef r; term_maxvar = -1 |}

lemma mk_tderef_inv :
   forall r:mident. term_inv (mk_tderef r)

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
   {| term_node = Tbin t1 o t2;
      term_maxvar = max t1.term_maxvar t2.term_maxvar |}

lemma mk_tbin_inv :
   forall t1 t2:term, o:operator. term_inv t1 /\ term_inv t2 ->
     term_inv (mk_tbin t1 o t2)


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

87 88 89 90 91 92 93 94
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
      forall sigma: type_env, pi:type_stack, v:value, m:int.
	type_term sigma pi {| term_node = Tvalue v; term_maxvar = m |} (type_value v)
  | Type_var :
      forall sigma: type_env, pi:type_stack, v: ident, m:int, ty:datatype.
        (get_vartype v pi = ty) ->
        type_term sigma pi {| term_node = Tvar v ; term_maxvar = m |} ty
  | Type_deref :
      forall sigma: type_env, pi:type_stack, v: mident, m:int, ty:datatype.
        (get_reftype v sigma = ty) ->
        type_term sigma pi {| term_node = Tderef v; term_maxvar = m |} ty
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
        m:int, ty1 ty2 ty:datatype.
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
        type_term sigma pi {| term_node = Tbin t1 op t2; term_maxvar = m |} ty

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

178 179 180 181 182 183 184 185 186 187 188
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
189
	(get_reftype x sigma = ty) ->
190 191 192 193 194 195 196 197 198 199
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
200
	type_fmla sigma pi p ->
201 202 203
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
204
	type_fmla sigma pi inv ->
205 206 207
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
  | {| term_node = Tvalue v |} -> v
  | {| term_node = Tvar id |} -> get_stack id pi
  | {| term_node = Tderef id |} -> get_env id sigma
  | {| term_node = Tbin t1 op t2 |} ->
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tvar _ |} -> t
  | {| term_node = Tderef x |} -> if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tderef _ |} -> t
  | {| term_node = Tvar x |} ->
      if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
  id.ident_index > t.term_maxvar

lemma eval_msubst_term:
  forall sigma:env, pi:stack, e:term, x:mident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

lemma eval_subst_term:
  forall sigma:env, pi:stack, e:term, x:ident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (subst_term e x v) =
    eval_term sigma (Cons (x, (get_stack v pi)) pi) e

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

lemma let_subst:
    forall t:term, f:fmla, x id':ident, id :mident.
    msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id')

lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

lemma eval_subst:
  forall f:fmla, sigma:env, pi:stack, x:ident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (subst f x v) <->
     eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f)

lemma eval_swap:
  forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)

lemma eval_same_var:
  forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <->
    eval_fmla sigma (Cons (id,v1) pi) f

lemma eval_change_free :
  forall f:fmla, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)


  (** [valid_fmla f] is true when [f] is valid in any environment *)
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

(** let id' = t in f[id <- id'] <=> let id = t in f*)
lemma let_equiv :
  forall id:ident, id':ident, t:term, f:fmla.
    forall sigma:env, pi:stack.
      fresh_in_fmla id' f ->
	(eval_fmla sigma pi (Flet id' t (subst f id id'))
	 -> eval_fmla sigma pi (Flet id t f))

lemma let_equiv2 :
  forall id:ident, id':ident, t:term, f:fmla.
    forall sigma:env, pi:stack.
      fresh_in_fmla id' f ->
	eval_fmla sigma pi (Flet id' t (subst f id id'))
	 -> eval_fmla sigma pi (Flet id t f)

lemma let_implies :
  forall id:ident, t:term, p q:fmla.
    valid_fmla (Fimplies p q) ->
    valid_fmla (Fimplies (Flet id t p) (Flet id t q))

398 399 400 401 402 403 404 405
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
406 407 408 409 410
  end


(** small-steps semantics for expressions *)

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
426 427

  | one_step_if_true:
428 429 430
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
431 432

  | one_step_if_false:
433 434 435
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
436 437 438 439 440

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
441
          one_step sigma pi (Sassert f) sigma pi Sskip
442

443 444
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
445 446
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
447 448 449 450 451 452 453 454 455 456
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

  | one_step_while_falsee:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
457 458 459

 (** many steps of execution *)

460
 inductive many_steps env stack stmt env stack stmt int =
461
   | many_steps_refl:
462
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
463
   | many_steps_trans:
464 465 466 467
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
468 469

  lemma steps_non_neg:
470 471
    forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
472 473

  lemma many_steps_seq:
474 475
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
476
      exists sigma2:env, pi2:stack, n1 n2:int.
477 478
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
479 480 481
        n = 1 + n1 + n2

 lemma one_step_change_free :
482 483 484 485
  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value.
    fresh_in_stmt id s ->
    one_step sigma (Cons (id,v) pi) s sigma' pi' s' ->
    one_step sigma pi s sigma' pi' s'
486 487 488 489 490 491



(** {3 Hoare triples} *)

(** partial correctness *)
492
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
493
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
494 495 496
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
497 498

(*** total correctness *)
499
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
500
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
501 502 503
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
532
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
533 534 535
      IdMap.get sigma' y = Vint 42

goal If42 :
536
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
537
      one_step my_sigma my_pi
538 539 540 541 542
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
543 544 545 546 547 548 549 550 551 552 553 554 555 556
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
557
  forall p p' q q':fmla, s:stmt.
558
  valid_fmla (Fimplies p' p) ->
559
  valid_triple p s q ->
560
  valid_fmla (Fimplies q q') ->
561
  valid_triple p' s q'
562

563 564
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
565 566

lemma assign_rule:
567 568 569
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
570 571

lemma seq_rule:
572 573 574
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
575 576

lemma if_rule:
577 578 579 580
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
581 582 583

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
584
  valid_triple p (Sassert f) p
585 586 587

lemma assert_rule_ext:
  forall f p:fmla.
588
  valid_triple (Fimplies f p) (Sassert f) p
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

theory Simpl_tautology

  predicate p
  predicate q

  lemma simpl_tautology :
    (p -> q) <-> (p /\ q <-> p)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
650 651 652 653 654 655 656
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
657 658
  end

659
  function fresh_from (f:fmla) (s:stmt) : ident
660

661 662
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
663

664 665
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
666

667
  function abstract_effects (s:stmt) (f:fmla) : fmla
668

669 670 671 672
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
673
        (* asymmetric and *)
674 675 676 677 678 679 680 681 682
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
683 684
        Fand inv
          (abstract_effects body
685 686 687
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
688 689 690 691 692 693

    end


  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
694
  (*   fresh_in_stmt id e -> *)
695 696 697
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma distrib_conj:
698 699 700 701
    forall sigma:env, pi:stack, s:stmt, p q:fmla.
     eval_fmla sigma pi (wp s (Fand p q)) <->
       (eval_fmla sigma pi (wp s p)) /\
       (eval_fmla sigma pi (wp s q))
702 703

  lemma monotonicity:
704
    forall s:stmt, p q:fmla.
705
      valid_fmla (Fimplies p q)
706
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
707 708

  lemma wp_reduction:
709 710
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
711
    forall q:fmla.
712 713
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
714 715

  lemma progress:
716 717 718 719 720 721 722 723
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
      type_fmla sigmat pit q ->
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
724 725 726 727 728 729 730 731 732 733

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)