blocking_semantics3.mlw 23 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

23
(** ident for mutable variables *)
24 25
type mident

26 27 28
axiom mident_decide :
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

29
(** ident for immutable variables *)
30
type ident = {| ident_index : int |}
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
31 32 33
 
axiom ident_decide :
  forall m1 m2: ident. m1 = m2 \/ m1 <> m2
34 35

(** Terms *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
36
type term =
37 38 39 40 41 42 43 44
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term


predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
45 46 47 48
  | Tvalue _  -> false
  |  Tvar i  -> x=i
  |  Tderef _  -> false
  |  Tbin t1 _ t2 -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
49 50
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
51 52
(* predicate term_inv (t:term) = *)
(*   forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar *)
53 54

function mk_tvalue (v:value) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
55
   Tvalue v
56 57

function mk_tvar (i:ident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
58
   Tvar i
59 60

function mk_tderef (r:mident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
61
   Tderef r
62 63

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
64
    Tbin t1 o t2
65 66 67 68 69 70 71 72 73 74 75


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

76 77 78 79 80 81 82 83
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
84

85 86 87
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
115 116
      forall sigma: type_env, pi:type_stack, v:value.
	type_term sigma pi  (Tvalue v) (type_value v)
117
  | Type_var :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
118
      forall sigma: type_env, pi:type_stack, v: ident, ty:datatype.
119
        (get_vartype v pi = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
120
        type_term sigma pi (Tvar v) ty
121
  | Type_deref :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
122
      forall sigma: type_env, pi:type_stack, v: mident, ty:datatype.
123
        (get_reftype v sigma = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
124
        type_term sigma pi (Tderef v) ty
125 126
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
127
        ty1 ty2 ty:datatype.
128 129 130
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
131
        type_term sigma pi (Tbin t1 op t2) ty
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

170 171 172 173 174 175 176 177 178 179 180
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
181
	(get_reftype x sigma = ty) ->
182 183 184 185 186 187 188 189 190 191
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
192
	type_fmla sigma pi p ->
193 194 195
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
196
	type_fmla sigma pi inv ->
197 198 199
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
236 237 238 239
  | Tvalue v -> v
  |  Tvar id  -> get_stack id pi
  |  Tderef id  -> get_env id sigma
  |  Tbin t1 op t2  ->
240 241 242
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

243 244 245 246 247 248 249 250 251

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
273 274 275
  | Tvalue _ | Tvar _  -> t
  | Tderef x -> if r = x then mk_tvar v else t
  | Tbin t1 op t2  ->
276 277 278 279 280
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
281 282
  | Tvalue _ | Tderef _  -> t
  | Tvar x  ->
283
      if r = x then mk_tvar v else t
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
284
  | Tbin t1 op t2  ->
285 286 287 288 289
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
290
    not (var_occurs_in_term id t)
291

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
292 293 294 295 296
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
	  
297
lemma eval_msubst_term:
298
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
299 300 301 302
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
303 304 305 306 307
(* lemma eval_subst_term: *)
(*   forall sigma:env, pi:stack, e:term, x:ident, v:ident. *)
(*     fresh_in_term v e -> *)
(*     eval_term sigma pi (subst_term e x v) = *)
(*     eval_term sigma (Cons (x, (get_stack v pi)) pi) e *)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
348 349 350 351
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
352

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
353
(* Need it for monotonicity and wp_reduction *)
354 355 356 357 358 359
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
360 361 362 363 364
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
365

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
366 367 368 369 370 371 372 373 374 375
lemma eval_same_var_term:
  forall t:term, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_term sigma (Cons (id,v1) (Cons (id,v2) pi)) t =
    eval_term sigma (Cons (id,v1) pi) t

lemma eval_same_var:
  forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <->
    eval_fmla sigma (Cons (id,v1) pi) f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
376 377 378 379 380 381 382 383 384 385 386
lemma eval_swap_term:
  forall t:term, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_term sigma (Cons (id1,v1) (Cons (id2,v2) pi)) t =
    eval_term sigma (Cons (id2,v2) (Cons (id1,v1) pi)) t)

lemma eval_swap:
  forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)
387

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
388
 (* Need it for monotonicity*)
389
lemma eval_change_free :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
390
  forall sigma:env, pi:stack, f:fmla, id:ident, v:value.
391 392 393
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
394
(** [valid_fmla f] is true when [f] is valid in any environment *)
395 396
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

397
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
398 399 400 401 402 403
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
404

405
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
406 407 408 409 410 411 412 413 414 415 416 417
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
418

419 420 421 422 423 424 425 426
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
427 428 429 430 431
  end


(** small-steps semantics for expressions *)

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
447 448

  | one_step_if_true:
449 450 451
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
452 453

  | one_step_if_false:
454 455 456
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
457 458 459 460 461

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
462
          one_step sigma pi (Sassert f) sigma pi Sskip
463

464 465
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
466 467
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
468 469 470 471
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
472
  | one_step_while_false:
473 474 475 476 477
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
478 479 480

 (** many steps of execution *)

481
 inductive many_steps env stack stmt env stack stmt int =
482
   | many_steps_refl:
483
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
484
   | many_steps_trans:
485 486 487 488
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
489

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
490 491 492
lemma steps_non_neg:
  forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
    many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
493

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
494
(* Used by Hoare_logic/seq_rule*)
495
  lemma many_steps_seq:
496 497
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
498
      exists sigma2:env, pi2:stack, n1 n2:int.
499 500
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
501 502
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
503 504 505 506 507
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
508 509 510 511 512


(** {3 Hoare triples} *)

(** partial correctness *)
513
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
514
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
515 516 517
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
518 519

(*** total correctness *)
520
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
521
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
522 523 524
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
553
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
554 555 556
      IdMap.get sigma' y = Vint 42

goal If42 :
557
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
558
      one_step my_sigma my_pi
559 560 561 562 563
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
564 565 566 567 568 569 570 571 572 573 574 575 576 577
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
578
  forall p p' q q':fmla, s:stmt.
579
  valid_fmla (Fimplies p' p) ->
580
  valid_triple p s q ->
581
  valid_fmla (Fimplies q q') ->
582
  valid_triple p' s q'
583

584 585
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
586 587

lemma assign_rule:
588 589 590
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
591 592

lemma seq_rule:
593 594 595
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
596 597

lemma if_rule:
598 599 600 601
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
602 603 604

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
605
  valid_triple p (Sassert f) p
606 607 608

lemma assert_rule_ext:
  forall f p:fmla.
609
  valid_triple (Fimplies f p) (Sassert f) p
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
661 662 663 664 665 666 667
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
668 669
  end

670
  function fresh_from (f:fmla) (s:stmt) : ident
671

672
  (* Need it for monotonicity*)
673 674
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
675

676 677
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
678

679
  function abstract_effects (s:stmt) (f:fmla) : fmla
680

MARCHE Claude's avatar
MARCHE Claude committed
681 682 683 684 685
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
686 687
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
688 689
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
690

691 692 693 694
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
695
        (* asymmetric and *)
696 697 698 699 700 701 702 703 704
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
705 706
        Fand inv
          (abstract_effects body
707 708 709
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
710 711 712

    end

MARCHE Claude's avatar
MARCHE Claude committed
713 714 715 716 717 718
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


719 720
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
721
  (*   fresh_in_stmt id e -> *)
722 723 724
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
725
    forall s:stmt, p q:fmla.
726
      valid_fmla (Fimplies p q)
727
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
728 729 730 731 732 733

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
734 735

  lemma wp_reduction:
736 737
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
738
    forall q:fmla.
739 740
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
741 742

  lemma progress:
743 744 745
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
746
(* useful ?
747
      type_fmla sigmat pit q ->
748
*)
749 750 751 752
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
753 754 755 756 757 758 759 760 761

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)