Attention une mise à jour du service Gitlab va être effectuée le mardi 18 janvier (et non lundi 17 comme annoncé précédemment) entre 18h00 et 18h30. Cette mise à jour va générer une interruption du service dont nous ne maîtrisons pas complètement la durée mais qui ne devrait pas excéder quelques minutes.

parser.mly 30.9 KB
Newer Older
1
2
3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2015   --   INRIA - CNRS - Paris-Sud University  *)
5
6
7
8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11
12

%{
13
module Incremental = struct
14
15
16
17
18
19
20
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
21
22
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
23
24
25
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
26
end
27

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
28
29
  open Ptree

30
  let infix  s = "infix "  ^ s
31
  let prefix s = "prefix " ^ s
Andrei Paskevich's avatar
Andrei Paskevich committed
32
  let mixfix s = "mixfix " ^ s
33

34
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
Andrei Paskevich's avatar
Andrei Paskevich committed
35

36
  let floc s e = Loc.extract (s,e)
Andrei Paskevich's avatar
Andrei Paskevich committed
37

38
  let add_lab id l = { id with id_lab = l }
39

40
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
41

42
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
43

44
45
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
46
47
48
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
49

50
51
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
52
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
53

54
55
56
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
57
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
58
59
60
61
62
63
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
64
    sp_reads   = [];
65
66
    sp_writes  = [];
    sp_variant = [];
67
68
    sp_checkrw = false;
    sp_diverge = false;
69
  }
70

71
72
73
74
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
75
    sp_reads   = s1.sp_reads @ s2.sp_reads;
76
77
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
78
79
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
80
  }
81

82
(* dead code
83
  let add_init_mark e =
84
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
85
    { e with expr_desc = Emark (init, e) }
86
*)
87

88
  let small_integer i =
89
    try match i with
90
91
92
93
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
94
    with Failure _ -> raise Error
95

96
97
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
98

99
100
101
102
103
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
104
105
%}

106
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
107

108
%token <string> LIDENT UIDENT
109
%token <Ptree.integer_constant> INTEGER
110
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
111
112
%token <Ptree.real_constant> FLOAT
%token <string> STRING
113
%token <Loc.position> POSITION
114
%token <string> QUOTE_UIDENT QUOTE_LIDENT OPAQUE_QUOTE_LIDENT
115

116
(* keywords *)
117

118
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
119
120
121
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
Andrei Paskevich's avatar
Andrei Paskevich committed
122
%token THEN THEORY TRUE TYPE USE WITH
123

124
(* program keywords *)
125

126
127
128
129
130
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
131

132
(* symbols *)
133

Andrei Paskevich's avatar
Andrei Paskevich committed
134
%token AND ARROW
135
%token BAR
136
%token COLON COMMA
137
%token DOT DOTDOT EQUAL LAMBDA LTGT
138
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
139
%token LARROW LRARROW OR
140
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
141
%token UNDERSCORE
142
143
144

%token EOF

145
(* program symbols *)
146

147
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
148

149
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150

151
%nonassoc IN
152
153
154
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
155
%nonassoc prec_no_else
156
%nonassoc DOT ELSE GHOST
157
%nonassoc prec_named
158
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
159

Andrei Paskevich's avatar
Andrei Paskevich committed
160
%right ARROW LRARROW
161
162
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
163
%nonassoc NOT
164
%left EQUAL LTGT OP1
165
%nonassoc LARROW
166
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
167
%left OP2
168
%left OP3
169
%left OP4
170
%nonassoc prec_prefix_op
171
172
%nonassoc LEFTSQ
%nonassoc OPPREF
173

174
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
175

176
177
%start <Ptree.incremental -> unit> open_file
%start <unit> logic_file program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
178
179
%%

180
181
(* Theories, modules, namespaces *)

182
open_file:
183
184
(* Dummy token. Menhir does not accept epsilon. *)
| EOF { Incremental.open_file }
185

Andrei Paskevich's avatar
Andrei Paskevich committed
186
logic_file:
187
| theory* EOF   { Incremental.close_file () }
188

189
190
191
program_file:
| theory_or_module* EOF { Incremental.close_file () }

192
193
theory:
| theory_head theory_decl* END  { Incremental.close_theory () }
194

195
196
197
198
theory_or_module:
| theory                        { () }
| module_head module_decl* END  { Incremental.close_module () }

199
theory_head:
200
| THEORY labels(uident)  { Incremental.open_theory $2 }
201

202
203
204
module_head:
| MODULE labels(uident)  { Incremental.open_module $2 }

205
206
207
208
209
theory_decl:
| decl            { Incremental.new_decl  (floc $startpos $endpos) $1 }
| use_clone       { Incremental.use_clone (floc $startpos $endpos) $1 }
| namespace_head theory_decl* END
    { Incremental.close_namespace (floc $startpos($1) $endpos($1)) $1 }
210

211
212
213
214
215
216
module_decl:
| decl            { Incremental.new_decl  (floc $startpos $endpos) $1 }
| pdecl           { Incremental.new_pdecl (floc $startpos $endpos) $1 }
| use_clone       { Incremental.use_clone (floc $startpos $endpos) $1 }
| namespace_head module_decl* END
    { Incremental.close_namespace (floc $startpos($1) $endpos($1)) $1 }
217

218
219
220
namespace_head:
| NAMESPACE boption(IMPORT) uident
   { Incremental.open_namespace $3.id_str; $2 }
221

222
(* Use and clone *)
223

224
use_clone:
225
226
227
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
228

229
use:
230
| boption(IMPORT) tqualid
231
    { { use_theory = $2; use_import = Some ($1, qualid_last $2) } }
232
233
| boption(IMPORT) tqualid AS uident
    { { use_theory = $2; use_import = Some ($1, $4.id_str) } }
234
235
| EXPORT tqualid
    { { use_theory = $2; use_import = None } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
236

237
clone_subst:
238
239
| NAMESPACE ns EQUAL ns         { CSns    (floc $startpos $endpos, $2,$4) }
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
240
241
242
243
244
245
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
246

247
248
249
ns:
| uqualid { Some $1 }
| DOT     { None }
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| TYPE late_invariant                       { Dtype [$2] }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
265
266

meta_arg:
267
268
269
270
271
272
273
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
| PROP      qualid  { Mpr $2 }
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
274
275

(* Type declarations *)
276
277

type_decl:
278
| labels(lident) ty_var* typedefn
279
  { let model, vis, def, inv = $3 in
280
    let vis = if model then Abstract else vis in
281
282
283
    { td_ident = $1; td_params = $2;
      td_model = model; td_vis = vis; td_def = def;
      td_inv = inv; td_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
284

285
late_invariant:
286
| labels(lident) ty_var* invariant+
287
288
289
  { { td_ident = $1; td_params = $2;
      td_model = false; td_vis = Public; td_def = TDabstract;
      td_inv = $3; td_loc = floc $startpos $endpos } }
290

291
ty_var:
292
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
293
294

typedefn:
295
| (* epsilon *)
296
    { false, Public, TDabstract, [] }
297
| model abstract bar_list1(type_case) invariant*
298
    { $1, $2, TDalgebraic $3, $4 }
299
| model abstract LEFTBRC semicolon_list1(type_field) RIGHTBRC invariant*
300
    { $1, $2, TDrecord $4, $6 }
301
302
| model abstract ty invariant*
    { $1, $2, TDalias $3, $4 }
303

304
305
306
307
308
model:
| EQUAL         { false }
| MODEL         { true }

abstract:
309
| (* epsilon *) { Public }
310
311
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
312

313
314
315
316
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
317

318
field_modifiers:
319
| (* epsilon *) { false, false }
320
321
322
323
324
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

325
type_case:
326
| labels(uident) params { floc $startpos $endpos, $1, $2 }
327

328
(* Logic declarations *)
329

330
331
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
332
333
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
334

335
336
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
337
338
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
339

340
341
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
342
343
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
344

345
with_logic_decl:
346
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
347
348
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
349

350
(* Inductive declarations *)
351
352

inductive_decl:
353
| labels(lident_rich) params ind_defn
354
355
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
356

357
358
359
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
360

361
362
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
363

364
(* Type expressions *)
365

366
367
368
369
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
370

371
372
373
374
375
376
377
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
| quote_lident                      { PTtyvar ($1, false) }
| opaque_quote_lident               { PTtyvar ($1, true) }
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
378

379
380
cast:
| COLON ty  { $2 }
381

382
(* Parameters and binders *)
383

384
385
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
386
387
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
388
389
   names, whose type must be inferred. *)

390
params:  param*  { List.concat $1 }
391

392
binders: binder+ { List.concat $1 }
393
394
395

param:
| anon_binder
396
397
398
399
400
401
402
403
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
404
405
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
406
| LEFTPAR binder_vars_rest RIGHTPAR
407
    { match $2 with [l,_] -> error_param l
408
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
409
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
410
    { match $3 with [l,_] -> error_param l
411
412
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
413
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
414
| LEFTPAR GHOST binder_vars cast RIGHTPAR
415
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
416

417
418
binder:
| anon_binder
419
420
421
422
423
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
424
425
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
426
427
428
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
429
430
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
431
432
433
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
434
435
436
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
437
| LEFTPAR binder_vars_rest RIGHTPAR
438
    { match $2 with [l,i] -> [l, i, false, None]
439
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
440
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
441
    { match $3 with [l,i] -> [l, i, true, None]
442
443
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
444
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
445
| LEFTPAR GHOST binder_vars cast RIGHTPAR
446
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
447

448
449
450
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
451

452
binder_vars_rest:
453
454
455
456
457
458
459
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
460
   { List.rev_append $1 ($2 :: $3) }
461
| anon_binder binder_var*
462
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
463

464
binder_vars_head:
465
| ty {
466
467
    let of_id id = id.id_loc, Some id in
    let push acc = function
468
      | PTtyapp (Qident id, []) -> of_id id :: acc
469
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
470
    match $1 with
471
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
472
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
473

474
binder_var:
475
476
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
477
478

anon_binder:
479
480
| UNDERSCORE      { floc $startpos $endpos, None }

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
510
511
512
513
514
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
      | _ -> Tmatch ($4, [$2, $6]) }
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| quote_uident              { Tident (Qident $1) }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
557
558
559
560
561
562
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
563

564
565
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
566

567
568
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
569

570
571
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
572

573
574
575
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
576

577
578
579
580
581
582
583
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
584

585
586
587
588
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
| LAMBDA  { Tlambda }
589

590
591
592
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
593

594
(* Program declarations *)
595

596
pdecl:
597
| VAL top_ghost labels(lident_rich) type_v          { Dval ($3, $2, $4) }
598
| LET top_ghost labels(lident_rich) fun_defn        { Dfun ($3, $2, $4) }
599
| LET top_ghost labels(lident_rich) EQUAL fun_expr  { Dfun ($3, $2, $5) }
600
| LET REC with_list1(rec_defn)                      { Drec $3 }
601
602
| EXCEPTION labels(uident)                          { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                       { Dexn ($2, $3) }
603

604
605
606
607
608
609
top_ghost:
| (* epsilon *) { Gnone  }
| GHOST         { Gghost }
| LEMMA         { Glemma }

(* Function declarations *)
610
611

type_v:
612
| arrow_type_v  { $1 }
613
| cast          { PTpure $1 }
614
615

arrow_type_v:
616
| param params tail_type_c  { PTfunc ($1 @ $2, $3) }
617
618

tail_type_c:
619
620
| single_spec spec arrow_type_v { $3, spec_union $1 $2 }
| COLON simple_type_c           { $2 }
621
622

simple_type_c:
623
624
625
| ty spec { PTpure $1, $2 }

(* Function definitions *)
626

627
rec_defn:
628
| top_ghost labels(lident_rich) binders cast? spec EQUAL spec seq_expr
629
    { $2, $1, ($3, $4, $8, spec_union $5 $7) }
630

631
fun_defn:
632
| binders cast? spec EQUAL spec seq_expr { ($1, $2, $6, spec_union $3 $5) }
633

634
fun_expr:
635
636
| FUN binders spec ARROW spec seq_expr { ($2, None, $6, spec_union $3 $5) }

637
638
639
640
641
642
643
644
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
645

646
expr: e = mk_expr(expr_) { e }
647
648
649

expr_:
| expr_arg_
650
651
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
652
| NOT expr %prec prec_prefix_op
653
    { Enot $2 }
654
| prefix_op expr %prec prec_prefix_op
655
656
657
658
659
660
661
662
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = lazy_op ; r = expr
    { Elazy (l,o,r) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
663
| IF seq_expr THEN expr ELSE expr
664
    { Eif ($2, $4, $6) }
665
| IF seq_expr THEN expr %prec prec_no_else
666
667
668
669
670
671
672
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
673
| LET top_ghost pattern EQUAL seq_expr IN seq_expr
674
    { match $3.pat_desc with
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
      | Pvar id -> Elet (id, $2, $5, $7)
      | Pwild -> Elet (id_anonymous $3.pat_loc, $2, $5, $7)
      | Ptuple [] -> Elet (id_anonymous $3.pat_loc, $2,
          { $5 with expr_desc = Ecast ($5, PTtuple []) }, $7)
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $3.pat_loc in
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | _ ->
          let e = match $2 with
            | Glemma -> Loc.errorm ~loc:($3.pat_loc)
                "`let lemma' cannot be used with complex patterns"
            | Gghost -> { $5 with expr_desc = Eghost $5 }
            | Gnone -> $5 in
          Ematch (e, [$3, $7]) }
| LET top_ghost labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($3, $2, $5, $7) }
| LET top_ghost labels(lident) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
| LET top_ghost labels(lident_op_id) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
697
| LET REC with_list1(rec_defn) IN seq_expr
698
    { Erec ($3, $5) }
699
| fun_expr
700
701
702
703
704
705
706
    { Elam $1 }
| VAL top_ghost labels(lident_rich) mk_expr(val_expr) IN seq_expr
    { Elet ($3, $2, $4, $6) }
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
707
| quote_uident COLON seq_expr
708
    { Emark ($1, $3) }
709
| LOOP loop_annotation seq_expr END
710
    { Eloop ($2, $3) }
711
| WHILE seq_expr DO loop_annotation seq_expr DONE
712
713
714
    { Ewhile ($2, $4, $5) }
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
715
| ABSURD
716
    { Eabsurd }
717
| RAISE uqualid
718
    { Eraise ($2, None) }
719
| RAISE LEFTPAR uqualid seq_expr RIGHTPAR
720
721
722
    { Eraise ($3, Some $4) }
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
723
| ANY simple_type_c
724
    { Eany $2 }
725
| GHOST expr
726
    { Eghost $2 }
727
| ABSTRACT spec seq_expr END
728
729
730
    { Eabstract($3, $2) }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
731
| label expr %prec prec_named
732
733
734
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
735

736
737
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
738
739

expr_arg_:
740
741
742
743
744
745
746
747
748
749
750
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
751
752

expr_sub:
753
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
754
755
756
757
758
759
760
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
761
| expr_arg LEFTSQ expr RIGHTSQ
762
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
763
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
764
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
765
766
767
768
769
770
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
771

772
773
774
775
776
777
778
loop_annotation:
| (* epsilon *)
    { { loop_invariant = []; loop_variant = [] } }
| invariant loop_annotation
    { let a = $2 in { a with loop_invariant = $1 :: a.loop_invariant } }
| variant loop_annotation
    { let a = $2 in { a with loop_variant = variant_union $1 a.loop_variant } }
779

780
781
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
782

783
784
val_expr:
| tail_type_c { Eany $1 }
785

786
787
788
%inline lazy_op:
| AMPAMP  { LazyAnd }
| BARBAR  { LazyOr }
789
790

assertion_kind:
791
792
793
| ASSERT  { Aassert }
| ASSUME  { Aassume }
| CHECK   { Acheck }
794
795

for_direction:
796
797
| TO      { To }
| DOWNTO  { Downto }
798

799
(* Specification *)
800

801
spec:
802
| (* epsilon *)     { empty_spec }
803
| single_spec spec  { spec_union $1 $2 }
804

805
single_spec:
806
| REQUIRES LEFTBRC term RIGHTBRC
807
808
    { { empty_spec with sp_pre = [$3] } }
| ENSURES LEFTBRC ensures RIGHTBRC
809
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
810
| RETURNS LEFTBRC match_cases(term) RIGHTBRC
811
812
813
814
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
| RAISES LEFTBRC bar_list1(raises) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
| READS  LEFTBRC comma_list0(lqualid) RIGHTBRC
815
    { { empty_spec with sp_reads = $3; sp_checkrw = true } }
816
| WRITES LEFTBRC comma_list0(term) RIGHTBRC
817
    { { empty_spec with sp_writes = $3; sp_checkrw = true } }
818
819
| RAISES LEFTBRC comma_list1(xsymbol) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
820
821
| DIVERGES
    { { empty_spec with sp_diverge = true } }
822
823
| variant
    { { empty_spec with sp_variant = $1 } }
824

825
ensures:
826
| term
827
    { let id = mk_id "result" $startpos $endpos in
828
      [mk_pat (Pvar id) $startpos $endpos, $1] }
829

830
raises:
831
832
833
| uqualid ARROW term
    { $1, mk_pat (Ptuple []) $startpos($1) $endpos($1), $3 }
| uqualid pat_arg ARROW term
834
    { $1, $2, $4 }
835

836
xsymbol:
837
| uqualid
838
    { $1, mk_pat Pwild $startpos $endpos, mk_term Ttrue $startpos $endpos }
839

840
invariant:
841
| INVARIANT LEFTBRC term RIGHTBRC { $3 }
842

843
variant:
844
| VARIANT LEFTBRC comma_list1(single_variant) RIGHTBRC { $3 }
845

846
single_variant:
847
| term preceded(WITH,lqualid)? { $1, $2 }
848

849
(* Patterns *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
850

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
mk_pat(X): X { mk_pat $1 $startpos $endpos }

pattern: mk_pat(pattern_) { $1 }
pat_arg: mk_pat(pat_arg_) { $1 }

pattern_:
| pat_conj_                             { $1 }
| mk_pat(pat_conj_) BAR pattern         { Por ($1,$3) }

pat_conj_:
| pat_uni_                              { $1 }
| comma_list2(mk_pat(pat_uni_))         { Ptuple $1 }

pat_uni_:
| pat_arg_                              { $1 }
| uqualid pat_arg+                      { Papp ($1,$2) }
| mk_pat(pat_uni_) AS labels(lident)    { Pas ($1,$3) }
868
| mk_pat(pat_uni_) cast                 { Pcast($1,$2) }
869
870
871
872