mlw_typing.ml 26.4 KB
Newer Older
1 2
(**************************************************************************)
(*                                                                        *)
MARCHE Claude's avatar
MARCHE Claude committed
3
(*  Copyright (C) 2010-2012                                               *)
4 5 6
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
MARCHE Claude's avatar
MARCHE Claude committed
7
(*    Guillaume Melquiond                                                 *)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Util
23
open Ident
24 25 26
open Ty
open Term
open Decl
27 28 29
open Theory
open Env
open Ptree
30
open Mlw_dtree
31
open Mlw_ty
32
open Mlw_ty.T
33 34
open Mlw_expr
open Mlw_decl
35
open Mlw_module
36
open Mlw_dty
37

38 39
(** errors *)

40
exception DuplicateProgVar of string
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
exception DuplicateTypeVar of string
(*
exception PredicateExpected
exception TermExpected
exception FSymExpected of lsymbol
exception PSymExpected of lsymbol
exception ClashTheory of string
exception UnboundTheory of qualid
exception UnboundType of string list
*)
exception UnboundTypeVar of string
exception UnboundSymbol of string list

let error = Loc.error
let errorm = Loc.errorm

let rec print_qualid fmt = function
  | Qident s -> Format.fprintf fmt "%s" s.id
  | Qdot (m, s) -> Format.fprintf fmt "%a.%s" print_qualid m s.id

let () = Exn_printer.register (fun fmt e -> match e with
  | DuplicateTypeVar s ->
63 64 65
      Format.fprintf fmt "Type parameter %s is used twice" s
  | DuplicateProgVar s ->
      Format.fprintf fmt "Parameter %s is used twice" s
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
(*
  | PredicateExpected ->
      Format.fprintf fmt "syntax error: predicate expected"
  | TermExpected ->
      Format.fprintf fmt "syntax error: term expected"
  | FSymExpected ls ->
      Format.fprintf fmt "%a is not a function symbol" Pretty.print_ls ls
  | PSymExpected ls ->
      Format.fprintf fmt "%a is not a predicate symbol" Pretty.print_ls ls
  | ClashTheory s ->
      Format.fprintf fmt "Clash with previous theory %s" s
  | UnboundTheory q ->
      Format.fprintf fmt "unbound theory %a" print_qualid q
  | UnboundType sl ->
      Format.fprintf fmt "Unbound type '%a'"
        (Pp.print_list Pp.dot Pp.pp_print_string) sl
*)
  | UnboundTypeVar s ->
      Format.fprintf fmt "unbound type variable '%s" s
  | UnboundSymbol sl ->
      Format.fprintf fmt "Unbound symbol '%a'"
        (Pp.print_list Pp.dot Format.pp_print_string) sl
  | _ -> raise e)

(* TODO: let type_only = Debug.test_flag Typing.debug_type_only in *)

92 93 94 95 96 97
type denv = {
  uc     : module_uc;
  locals : (tvars * dity) Mstr.t;
  tvars  : tvars;
  denv   : Typing.denv; (* for user type variables only *)
}
98

99 100 101 102 103
let create_denv uc =
  { uc = uc;
    locals = Mstr.empty;
    tvars = empty_tvars;
    denv = Typing.create_denv (); }
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
(** Typing type expressions *)

let rec dity_of_pty ~user denv = function
  | Ptree.PPTtyvar id ->
      create_user_type_variable id
  | Ptree.PPTtyapp (pl, p) ->
      let dl = List.map (dity_of_pty ~user denv) pl in
      let x = Typing.string_list_of_qualid [] p in
      begin
        try
          let its = ns_find_it (get_namespace denv.uc) x in
          its_app ~user its dl
        with Not_found -> try
          let ts = ns_find_ts (Theory.get_namespace (get_theory denv.uc)) x in
          ts_app ts dl
        with Not_found ->
          let loc = Typing.qloc p in
          errorm ~loc "unbound symbol %a" Typing.print_qualid p
      end
  | Ptree.PPTtuple pl ->
      ts_app (ts_tuple (List.length pl)) (List.map (dity_of_pty ~user denv) pl)
126 127 128 129 130 131 132 133 134 135 136

(** Typing program expressions *)

let rec extract_labels labs loc e = match e.Ptree.expr_desc with
  | Ptree.Enamed (Ptree.Lstr s, e) -> extract_labels (s :: labs) loc e
  | Ptree.Enamed (Ptree.Lpos p, e) -> extract_labels labs (Some p) e
  | Ptree.Ecast  (e, ty) ->
      let labs, loc, d = extract_labels labs loc e in
      labs, loc, Ptree.Ecast ({ e with Ptree.expr_desc = d }, ty)
  | e -> List.rev labs, loc, e

137
(*
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
let unify_arg dity { dexpr_loc = loc; dexpr_type = (args, res) } =
  if args <> [] then errorm ~loc "value expected";
  unify dity res

let unify_args ls args el =
  try
    List.iter2 unify_arg args el
  with Invalid_argument _ ->
    raise (Term.BadArity (ls, List.length args, List.length el))

let unify_args_prg ~loc prg args el = match prg with
  | PV { pv_vs = vs } ->
      errorm ~loc "%s: not a function" vs.vs_name.id_string
  | PL pl ->
      unify_args pl.pl_ls args el; []
  | PA { pa_name = id } | PS { ps_name = id } ->
      let rec unify_list = function
        | a :: args, e :: el -> unify_arg a e; unify_list (args, el)
        | args, [] -> args
        | [], _ :: _ -> errorm ~loc "too many arguments for %s" id.id_string
      in
      unify_list (args, el)

let rec decompose_app args e = match e.Ptree.expr_desc with
  | Eapply (e1, e2) -> decompose_app (e2 :: args) e1
  | _ -> e, args
164 165 166 167 168 169 170
*)

(* value restriction *)
let rec is_fun e = match e.dexpr_desc with
  | DEfun _ -> true
  | DEmark (_, e) -> is_fun e
  | _ -> false
171

172 173 174 175 176 177 178 179 180 181
let rec dexpr ~userloc denv e =
  let loc = e.Ptree.expr_loc in
  let labs, userloc, d = extract_labels [] userloc e in
  let d, ty = dexpr_desc ~userloc denv loc d in
  let loc = def_option loc userloc in
  let e = {
    dexpr_desc = d; dexpr_loc = loc; dexpr_lab = labs; dexpr_type = ty; }
  in
  e

182
and dexpr_desc ~userloc denv _loc = function
183 184
  | Ptree.Eident (Qident {id=x}) when Mstr.mem x denv.locals ->
      (* local variable *)
185 186 187 188
      let tvs, dity = Mstr.find x denv.locals in
      let dity = specialize_scheme tvs dity in
      DElocal x, dity
(***
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  | Ptree.Eident p ->
      let x = Typing.string_list_of_qualid [] p in
      begin
        try
          let prg = ns_find_ps (get_namespace denv.uc) x in
          DEglobal (prg, []), specialize_prgsymbol prg
        with Not_found -> try
          let ls = ns_find_ls (Theory.get_namespace (get_theory denv.uc)) x in
          DElogic (ls, []), specialize_lsymbol ls
        with Not_found ->
          errorm ~loc "unbound symbol %a" Typing.print_qualid p
      end
  | Ptree.Eapply (e1, e2) ->
      let e, el = decompose_app [e2] e1 in
      let e = dexpr ~userloc denv e in
      let el = List.map (dexpr ~userloc denv) el in
      begin match e.dexpr_desc with
        | DElogic (ls, _) ->
            let args, res = e.dexpr_type in
            unify_args ls args el;
            DElogic (ls, el), ([], res)
        | DEglobal (prg, _) ->
            let args, res = e.dexpr_type in
            let args = unify_args_prg ~loc prg args el in
            DEglobal (prg, el), (args, res)
        | _ ->
          assert false (*TODO*)
      end
217
***)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  | Ptree.Elet (id, e1, e2) ->
      let e1 = dexpr ~userloc denv e1 in
      let tvars =
        if is_fun e1 then denv.tvars else add_tvars denv.tvars e1.dexpr_type in
      let s = tvars, e1.dexpr_type in
      let denv =
        { denv with locals = Mstr.add id.id s denv.locals; tvars = tvars } in
      let e2 = dexpr ~userloc denv e2 in
      DElet (id, e1, e2), e2.dexpr_type
  | Ptree.Ecast (e1, pty) ->
      let e1 = dexpr ~userloc denv e1 in
      unify e1.dexpr_type (dity_of_pty ~user:false denv pty);
      e1.dexpr_desc, e1.dexpr_type
  | Ptree.Enamed _ ->
      assert false
233 234 235 236 237
  | _ ->
      assert false (*TODO*)

type local_var =
  | Lpvsymbol of pvsymbol
238
  | Lpsymbol  of psymbol * dity
239

240 241
let rec expr _locals de = match de.dexpr_desc with
(***
242 243 244 245 246
  | DElocal x ->
      assert (Mstr.mem x locals);
      begin match Mstr.find x locals with
      | Lpvsymbol pv -> e_value pv
      | Lpasymbol pa -> e_arrow pa
247
      | Lpsymbol (ps, da) -> e_inst ps (match_darrow ps da)
248
      end
249
***)
250 251 252
  | _ ->
      assert false (*TODO*)

253 254
(** Type declaration *)

255
type tys = ProgTS of itysymbol | PureTS of tysymbol
256 257 258 259 260 261 262 263 264

let find_tysymbol q uc =
  let loc = Typing.qloc q in
  let sl = Typing.string_list_of_qualid [] q in
  try ProgTS (ns_find_it (get_namespace uc) sl)
  with Not_found ->
  try PureTS (ns_find_ts (Theory.get_namespace (get_theory uc)) sl)
  with Not_found -> error ~loc (UnboundSymbol sl)

265 266 267
let look_for_loc tdl s =
  let look_id loc id = if id.id = s then Some id.id_loc else loc in
  let look_pj loc (id,_) = option_fold look_id loc id in
268 269 270
  let look_cs loc (csloc,id,pjl) =
    let loc = if id.id = s then Some csloc else loc in
    List.fold_left look_pj loc pjl in
271 272 273 274 275 276 277 278 279 280
  let look_fl loc f = look_id loc f.f_ident in
  let look loc d =
    let loc = look_id loc d.td_ident in
    match d.td_def with
      | TDabstract | TDalias _ -> loc
      | TDalgebraic csl -> List.fold_left look_cs loc csl
      | TDrecord fl -> List.fold_left look_fl loc fl
  in
  List.fold_left look None tdl

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
let add_types uc tdl =
  let add m d =
    let id = d.td_ident.id in
    Mstr.add_new (Loc.Located (d.td_loc, ClashSymbol id)) id d m in
  let def = List.fold_left add Mstr.empty tdl in

  (* detect cycles *)

  let rec cyc_visit x d seen = match Mstr.find_opt x seen with
    | Some true -> seen
    | Some false -> errorm ~loc:d.td_loc "Cyclic type definition"
    | None ->
        let ts_seen seen = function
          | Qident { id = x } ->
              begin try cyc_visit x (Mstr.find x def) seen
              with Not_found -> seen end
          | _ -> seen in
        let rec check seen = function
          | PPTtyvar _ -> seen
          | PPTtyapp (tyl,q) -> List.fold_left check (ts_seen seen q) tyl
          | PPTtuple tyl -> List.fold_left check seen tyl in
        let seen = match d.td_def with
          | TDabstract | TDalgebraic _ | TDrecord _ -> seen
          | TDalias ty -> check (Mstr.add x false seen) ty in
        Mstr.add x true seen in
  ignore (Mstr.fold cyc_visit def Mstr.empty);

  (* detect mutable types *)

  let mutables = Hashtbl.create 5 in
  let rec mut_visit x =
    try Hashtbl.find mutables x
    with Not_found ->
      let ts_mut = function
        | Qident { id = x } when Mstr.mem x def -> mut_visit x
        | q ->
            begin match find_tysymbol q uc with
              | ProgTS s -> s.its_regs <> []
              | PureTS _ -> false end in
      let rec check = function
        | PPTtyvar _ -> false
        | PPTtyapp (tyl,q) -> ts_mut q || List.exists check tyl
        | PPTtuple tyl -> List.exists check tyl in
      Hashtbl.replace mutables x false;
      let mut = match (Mstr.find x def).td_def with
        | TDabstract -> false
        | TDalias ty -> check ty
        | TDalgebraic csl ->
            let proj (_,pty) = check pty in
            List.exists (fun (_,_,l) -> List.exists proj l) csl
        | TDrecord fl ->
            let field f = f.f_mutable || check f.f_pty in
            List.exists field fl in
      Hashtbl.replace mutables x mut;
      mut
  in
  Mstr.iter (fun x _ -> ignore (mut_visit x)) def;

  (* create type symbols and predefinitions for mutable types *)

  let tysymbols = Hashtbl.create 5 in
  let predefs = Hashtbl.create 5 in
  let rec its_visit x =
    try match Hashtbl.find tysymbols x with
      | Some ts -> ts
      | None ->
          let loc = (Mstr.find x def).td_loc in
          errorm ~loc "Mutable type in a recursive type definition"
    with Not_found ->
      let d = Mstr.find x def in
      let add_tv acc id =
        let e = Loc.Located (id.id_loc, DuplicateTypeVar id.id) in
353
        let tv = create_tvsymbol (Denv.create_user_id id) in
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        Mstr.add_new e id.id tv acc in
      let vars = List.fold_left add_tv Mstr.empty d.td_params in
      let vl = List.map (fun id -> Mstr.find id.id vars) d.td_params in
      let id = Denv.create_user_id d.td_ident in
      let abst = d.td_vis = Abstract in
      let priv = d.td_vis = Private in
      Hashtbl.add tysymbols x None;
      let get_ts = function
        | Qident { id = x } when Mstr.mem x def -> ProgTS (its_visit x)
        | q -> find_tysymbol q uc
      in
      let rec parse = function
        | PPTtyvar { id = v ; id_loc = loc } ->
            let e = Loc.Located (loc, UnboundTypeVar v) in
            ity_var (Mstr.find_exn e v vars)
        | PPTtyapp (tyl,q) ->
            let tyl = List.map parse tyl in
            begin match get_ts q with
              | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
              | ProgTS ts -> Loc.try2 (Typing.qloc q) ity_app_fresh ts tyl
            end
        | PPTtuple tyl ->
376
            let ts = ts_tuple (List.length tyl) in
377 378 379 380 381
            ity_pur ts (List.map parse tyl)
      in
      let ts = match d.td_def with
        | TDalias ty ->
            let def = parse ty in
382 383
            let rl = Sreg.elements def.ity_vars.vars_reg in
            create_itysymbol id ~abst ~priv vl rl (Some def)
384
        | TDalgebraic csl when Hashtbl.find mutables x ->
385 386 387 388 389 390
            let projs = Hashtbl.create 5 in
            (* to check projections' types we must fix the tyvars *)
            let add s v = let t = ity_var v in ity_match s t t in
            let sbs = List.fold_left add ity_subst_empty vl in
            let mk_proj s (id,pty) =
              let ity = parse pty in
391
              let vtv = vty_value ity in
392 393
              match id with
                | None ->
394
                    let pv = create_pvsymbol (id_fresh "pj") vtv in
395
                    Sreg.union s ity.ity_vars.vars_reg, (pv, false)
396 397 398
                | Some id ->
                    try
                      let pv = Hashtbl.find projs id.id in
399
                      let ty = pv.pv_vtv.vtv_ity in
400 401
                      (* once we have ghost/mutable fields in algebraics,
                         don't forget to check here that they coincide, too *)
402
                      ignore (Loc.try3 id.id_loc ity_match sbs ty ity);
403 404
                      s, (pv, true)
                    with Not_found ->
405
                      let pv = create_pvsymbol (Denv.create_user_id id) vtv in
406
                      Hashtbl.replace projs id.id pv;
407
                      Sreg.union s ity.ity_vars.vars_reg, (pv, true)
408 409 410 411 412 413
            in
            let mk_constr s (_loc,cid,pjl) =
              let s,pjl = Util.map_fold_left mk_proj s pjl in
              s, (Denv.create_user_id cid, pjl)
            in
            let s,def = Util.map_fold_left mk_constr Sreg.empty csl in
414
            Hashtbl.replace predefs x def;
415
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
416
        | TDrecord fl when Hashtbl.find mutables x ->
417 418 419 420 421
            let mk_field s f =
              let ghost = f.f_ghost in
              let ity = parse f.f_pty in
              let fid = Denv.create_user_id f.f_ident in
              let s,mut = if f.f_mutable then
422
                let r = create_region fid ity in
423 424
                Sreg.add r s, Some r
              else
425
                Sreg.union s ity.ity_vars.vars_reg, None
426
              in
427 428
              let vtv = vty_value ?mut ~ghost ity in
              s, (create_pvsymbol fid vtv, true)
429 430 431
            in
            let s,pjl = Util.map_fold_left mk_field Sreg.empty fl in
            let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
432
            Hashtbl.replace predefs x [Denv.create_user_id cid, pjl];
433 434 435 436 437 438 439 440 441 442 443
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
        | TDalgebraic _ | TDrecord _ | TDabstract ->
            create_itysymbol id ~abst ~priv vl [] None
      in
      Hashtbl.add tysymbols x (Some ts);
      ts
  in
  Mstr.iter (fun x _ -> ignore (its_visit x)) def;

  (* create predefinitions for immutable types *)

444
  let def_visit d (abstr,algeb,alias) =
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    let x = d.td_ident.id in
    let ts = Util.of_option (Hashtbl.find tysymbols x) in
    let add_tv s x v = Mstr.add x.id v s in
    let vars = List.fold_left2 add_tv Mstr.empty d.td_params ts.its_args in
    let get_ts = function
      | Qident { id = x } when Mstr.mem x def ->
          ProgTS (Util.of_option (Hashtbl.find tysymbols x))
      | q -> find_tysymbol q uc
    in
    let rec parse = function
      | PPTtyvar { id = v ; id_loc = loc } ->
          let e = Loc.Located (loc, UnboundTypeVar v) in
          ity_var (Mstr.find_exn e v vars)
      | PPTtyapp (tyl,q) ->
          let tyl = List.map parse tyl in
          begin match get_ts q with
            | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
            | ProgTS ts -> Loc.try3 (Typing.qloc q) ity_app ts tyl []
          end
      | PPTtuple tyl ->
465
          let ts = ts_tuple (List.length tyl) in
466 467 468
          ity_pur ts (List.map parse tyl)
    in
    match d.td_def with
469 470 471 472
      | TDabstract ->
          ts :: abstr, algeb, alias
      | TDalias _ ->
          abstr, algeb, ts :: alias
473
      | (TDalgebraic _ | TDrecord _) when Hashtbl.find mutables x ->
474
          abstr, (ts, Hashtbl.find predefs x) :: algeb, alias
475 476 477 478
      | TDalgebraic csl ->
          let projs = Hashtbl.create 5 in
          let mk_proj (id,pty) =
            let ity = parse pty in
479
            let vtv = vty_value ity in
480 481
            match id with
              | None ->
482
                  create_pvsymbol (id_fresh "pj") vtv, false
483 484 485
              | Some id ->
                  try
                    let pv = Hashtbl.find projs id.id in
486
                    let ty = pv.pv_vtv.vtv_ity in
487 488
                    (* once we have ghost/mutable fields in algebraics,
                       don't forget to check here that they coincide, too *)
489
                    Loc.try2 id.id_loc ity_equal_check ty ity;
490 491
                    pv, true
                  with Not_found ->
492
                    let pv = create_pvsymbol (Denv.create_user_id id) vtv in
493 494 495 496 497
                    Hashtbl.replace projs id.id pv;
                    pv, true
          in
          let mk_constr (_loc,cid,pjl) =
            Denv.create_user_id cid, List.map mk_proj pjl in
498
          abstr, (ts, List.map mk_constr csl) :: algeb, alias
499 500 501
      | TDrecord fl ->
          let mk_field f =
            let fid = Denv.create_user_id f.f_ident in
502 503
            let vtv = vty_value ~ghost:f.f_ghost (parse f.f_pty) in
            create_pvsymbol fid vtv, true in
504
          let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
505 506
          let csl = [Denv.create_user_id cid, List.map mk_field fl] in
          abstr, (ts, csl) :: algeb, alias
507
  in
508
  let abstr,algeb,alias = List.fold_right def_visit tdl ([],[],[]) in
509 510

  (* detect pure type declarations *)
511

512 513 514
  let kn = get_known uc in
  let check its = Mid.mem its.its_pure.ts_name kn in
  let check ity = ity_s_any check Util.ffalse ity in
515
  let is_impure_type ts =
516
    ts.its_abst || ts.its_priv || ts.its_regs <> [] ||
517
    option_apply false check ts.its_def
518
  in
519
  let check (pv,_) =
520
    let vtv = pv.pv_vtv in
521
    vtv.vtv_ghost || vtv.vtv_mut <> None || check vtv.vtv_ity in
522 523 524
  let is_impure_data (ts,csl) =
    is_impure_type ts ||
    List.exists (fun (_,l) -> List.exists check l) csl
525
  in
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  let mk_pure_decl (ts,csl) =
    let pjt = Hvs.create 3 in
    let ty = ty_app ts.its_pure (List.map ty_var ts.its_args) in
    let mk_proj (pv,f) =
      let vs = pv.pv_vs in
      if f then try vs.vs_ty, Some (Hvs.find pjt vs) with Not_found ->
        let pj = create_fsymbol (id_clone vs.vs_name) [ty] vs.vs_ty in
        Hvs.replace pjt vs pj;
        vs.vs_ty, Some pj
      else
        vs.vs_ty, None
    in
    let mk_constr (id,pjl) =
      let pjl = List.map mk_proj pjl in
      let cs = create_fsymbol id (List.map fst pjl) ty in
      cs, List.map snd pjl
    in
    ts.its_pure, List.map mk_constr csl
  in
  let add_type_decl uc ts =
    if is_impure_type ts then
      add_pdecl_with_tuples uc (create_ty_decl ts)
548
    else
549 550 551 552 553 554 555 556 557 558 559 560 561
      add_decl_with_tuples uc (Decl.create_ty_decl ts.its_pure)
  in
  try
    let uc = List.fold_left add_type_decl uc abstr in
    let uc = if algeb = [] then uc else
      if List.exists is_impure_data algeb then
        add_pdecl_with_tuples uc (create_data_decl algeb)
      else
        let d = List.map mk_pure_decl algeb in
        add_decl_with_tuples uc (Decl.create_data_decl d)
    in
    let uc = List.fold_left add_type_decl uc alias in
    uc
562
  with
563 564 565 566 567 568 569 570 571
    | ClashSymbol s ->
        error ?loc:(look_for_loc tdl s) (ClashSymbol s)
    | RecordFieldMissing ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (RecordFieldMissing (cs,ls))
    | DuplicateRecordField ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (DuplicateRecordField (cs,ls))
    | DuplicateVar { vs_name = { id_string = s }} ->
        errorm ?loc:(look_for_loc tdl s)
          "Field %s is used twice in the same constructor" s
572 573 574

(** Use/Clone of theories and modules *)

575 576 577 578
type mlw_contents = modul Mstr.t
type mlw_library = mlw_contents library
type mlw_file = mlw_contents * Theory.theory Mstr.t

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
let find_theory loc lib path s =
  (* search first in .mlw files (using lib) *)
  let thm =
    try Some (Env.read_lib_theory lib path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match thm, th with
    | Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
    | None, None -> Loc.error ~loc (Env.TheoryNotFound (path, s))
    | None, Some t | Some t, None -> t

let find_theory loc lib mt path s = match path with
  | [] -> (* local theory *)
      begin try Mstr.find s mt with Not_found -> find_theory loc lib [] s end
  | _ :: _ -> (* theory in file path *)
      find_theory loc lib path s

type theory_or_module = Theory of Theory.theory | Module of modul

605 606 607
let print_path fmt sl =
  Pp.print_list (Pp.constant_string ".") Format.pp_print_string fmt sl

608 609 610 611 612
let find_module loc lib path s =
  (* search first in .mlw files *)
  let m, thm =
    try
      let mm, mt = Env.read_lib_file lib path in
613
      Mstr.find_opt s mm, Mstr.find_opt s mt
614 615 616 617 618 619 620 621 622 623 624 625 626
    with
      | LibFileNotFound _ -> None, None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match m, thm, th with
    | Some _, None, _ -> assert false
    | _, Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
627 628
    | None, None, None ->
        Loc.errorm ~loc "Theory/module not found: %a" print_path (path @ [s])
629 630 631
    | Some m, Some _, None -> Module m
    | None, Some t, None | None, None, Some t -> Theory t

632
let find_module loc lib mm mt path s = match path with
633 634 635 636 637 638 639
  | [] -> (* local module/theory *)
      begin try Module (Mstr.find s mm)
        with Not_found -> begin try Theory (Mstr.find s mt)
          with Not_found -> find_module loc lib [] s end end
  | _ :: _ -> (* module/theory in file path *)
      find_module loc lib path s

640 641
(** Main loop *)

642
let add_theory lib path mt m =
643 644
  let { id = id; id_loc = loc } = m.pth_name in
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
645
  let uc = create_theory ~path (Denv.create_user_id m.pth_name) in
646
  let rec add_decl uc = function
647 648
    | Dlogic d ->
        Typing.add_decl uc d
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let th = find_theory loc lib mt path s in
        (* open namespace, if any *)
        let uc =
          if use.use_imp_exp <> None then Theory.open_namespace uc else uc in
        (* use or clone *)
        let uc = match inst with
          | None -> Theory.use_export uc th
          | Some inst ->
              let inst = Typing.type_inst uc th inst in
              Theory.clone_export uc th inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> Theory.close_namespace uc imp use.use_as
        end
667 668 669
    | Dnamespace (loc, name, import, dl) ->
        let uc = Theory.open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
670
        Loc.try3 loc Theory.close_namespace uc import name
671 672 673 674
    | Dlet _ | Dletrec _ | Dparam _ | Dexn _ | Duse _ ->
        assert false
  in
  let uc = List.fold_left add_decl uc m.pth_decl in
675
  let th = close_theory uc in
676 677 678 679 680 681 682 683
  Mstr.add id th mt

let add_module lib path mm mt m =
  let { id = id; id_loc = loc } = m.mod_name in
  if Mstr.mem id mm then Loc.errorm ~loc "clash with previous module %s" id;
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
  let uc = create_module ~path (Denv.create_user_id m.mod_name) in
  let rec add_decl uc = function
684 685 686 687
    | Dlogic (TypeDecl tdl) ->
        add_types uc tdl
    | Dlogic d ->
        add_to_theory Typing.add_decl uc d
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let mth = find_module loc lib mm mt path s in
        (* open namespace, if any *)
        let uc = if use.use_imp_exp <> None then open_namespace uc else uc in
        (* use or clone *)
        let uc = match mth, inst with
          | Theory th, None -> use_export_theory uc th
          | Theory th, Some inst ->
              let inst = Typing.type_inst (get_theory uc) th inst in
              clone_export_theory uc th inst
          | Module m, None -> use_export uc m
          | Module m, Some inst ->
              let inst = Typing.type_inst (get_theory uc) m.mod_theory inst in
              clone_export uc m inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> close_namespace uc imp use.use_as
        end
    | Dnamespace (loc, name, import, dl) ->
        let uc = open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
        Loc.try3 loc close_namespace uc import name
713 714 715 716 717 718 719 720
    | Dlet (_id, e) ->
        let e = dexpr ~userloc:None (create_denv uc) e in
        ignore (expr Mstr.empty e);
        uc
    | Dletrec _ | Dparam _ | Dexn _ ->
        assert false (* TODO *)
    | Duse _ ->
        assert false (*TO BE REMOVED EVENTUALLY *)
721 722 723 724
  in
  let uc = List.fold_left add_decl uc m.mod_decl in
  let m = close_module uc in
  Mstr.add id m mm, Mstr.add id m.mod_theory mt
725 726 727

let add_theory_module lib path (mm, mt) = function
  | Ptheory th -> mm, add_theory lib path mt th
728
  | Pmodule m -> add_module lib path mm mt m
729