pgm_parser.mly 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**************************************************************************/
/*                                                                        */
/*  Copyright (C) 2010-                                                   */
/*    Francois Bobot                                                      */
/*    Jean-Christophe Filliatre                                           */
/*    Johannes Kanig                                                      */
/*    Andrei Paskevich                                                    */
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/

%{

  open Parsing
23
  open Lexing
24
  open Ptree
25 26 27 28 29 30
  open Pgm_ptree

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)

31 32 33 34 35 36 37
  let mk_expr d = { expr_loc = loc (); expr_desc = d }
  let mk_expr_i i d = { expr_loc = loc_i i; expr_desc = d }
 
  (* FIXME: factorize with parser/parser.mly *)
  let infix s = "infix " ^ s
  let prefix s = "prefix " ^ s
  let postfix s = "postfix " ^ s
38 39 40

  let join (b,_) (_,e) = (b,e)

41
  let rec mk_apply f = function
42 43 44
    | [] -> 
	assert false
    | [a] -> 
45
	Eapply (f, a)
46
    | a :: l -> 
47 48 49 50 51 52
	let loc = join f.expr_loc a.expr_loc in 
	mk_apply { expr_loc = loc; expr_desc = Eapply (f, a) } l

  let mk_apply_id id = 
    let e = { expr_desc = Eident (Qident id); expr_loc = id.id_loc } in
    mk_apply e
53
      
54 55 56 57 58 59 60 61 62 63 64
  let mk_infix e1 op e2 =
    let id = { id = infix op; id_loc = loc_i 2 } in
    mk_expr (mk_apply_id id [e1; e2])
     
  let mk_prefix op e1 =
    let id = { id = prefix op; id_loc = loc_i 1 } in
    mk_expr (mk_apply_id id [e1])
     

  (* parsing LOGIC strings using functions from src/parser/
     requires proper relocation *)
65 66 67 68 69

  let reloc loc lb =
    lb.lex_curr_p <- loc;
    lb.lex_abs_pos <- loc.pos_cnum

70 71
  let parse_string f loc s =
    let lb = Lexing.from_string s in
72
    reloc loc lb;
73 74
    f lb
    
75 76 77
  let logic_list0_decl (loc, s) = parse_string Lexer.parse_list0_decl loc s

  let lexpr (loc, s) = parse_string Lexer.parse_lexpr loc s
78

79 80 81 82 83 84 85
%}

/* Tokens */ 

%token <string> LIDENT UIDENT
%token <string> INTEGER
%token <string> OP0 OP1 OP2 OP3
86
%token <Ptree.real_constant> REAL
87
%token <string> STRING
88
%token <Lexing.position * string> LOGIC
89 90 91

/* keywords */

92 93
%token ABSURD AND AS ASSERT ASSUME BEGIN CHECK DO DONE ELSE END EXCEPTION FOR
%token FUN GHOST IF IN INVARIANT LET MATCH NOT RAISE RAISES READS REC 
94 95 96 97
%token RETURNS THEN TRY TYPE VARIANT VOID WHILE WITH WRITES

/* symbols */

98
%token UNDERSCORE QUOTE COMMA LEFTPAR RIGHTPAR COLON SEMICOLON
99
%token COLONEQUAL ARROW EQUAL AT DOT LEFTSQ RIGHTSQ 
100 101
%token LEFTBLEFTB RIGHTBRIGHTB BAR BARBAR AMPAMP BIGARROW 
%token EOF
102 103 104 105 106 107 108 109 110 111 112 113

/* Precedences */

%nonassoc prec_recfun
%nonassoc prec_fun
%left LEFTB LEFTBLEFTB
%left prec_simple

%left COLON 

%left prec_letrec
%left IN
114
%nonassoc GHOST
115 116 117 118 119 120 121 122

%right SEMICOLON

%left prec_no_else
%left ELSE

%left COLONEQUAL
%right ARROW LRARROW
123 124
%right BARBAR
%right AMPAMP
125 126 127 128 129
%right prec_if
%left EQUAL OP0
%left OP1
%left OP2
%left OP3
130
%nonassoc prefix_op
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
%right unary_op
%left prec_app
%left prec_ident
%left LEFTSQ

%nonassoc prec_decls
%nonassoc LOGIC TYPE INDUCTIVE

/* Entry points */

%type <Pgm_ptree.file> file
%start file

%%

file:
| list0_decl EOF { $1 }
;

list0_decl:
| /* epsilon */
   { [] }
| list1_decl 
   { $1 }
;

list1_decl:
| decl 
   { [$1] }
| decl list1_decl 
   { $1 :: $2 }
;

decl:
165
| LOGIC
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    { Dlogic (logic_list0_decl $1) }
| LET lident EQUAL expr
    { Dcode ($2, $4) }
;

lident:
| LIDENT
    { { id = $1; id_loc = loc () } }
;

any_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
;

uident:
| UIDENT { { id = $1; id_loc = loc () } }
;

lqualid:
| lident             { Qident $1 }
| uqualid DOT lident { Qdot ($1, $3) }
;

uqualid:
| uident             { Qident $1 }
| uqualid DOT uident { Qdot ($1, $3) }
;

expr:
197 198
| simple_expr %prec prec_simple 
   { $1 }
199
| expr EQUAL expr 
200
   { mk_infix $1 "=" $3 }
201 202
| expr COLONEQUAL expr 
   { mk_infix $1 ":=" $3 }
203
| expr OP0 expr 
204
   { mk_infix $1 $2 $3 }
205
| expr OP1 expr 
206
   { mk_infix $1 $2 $3 }
207
| expr OP2 expr 
208
   { mk_infix $1 $2 $3 }
209
| expr OP3 expr 
210
   { mk_infix $1 $2 $3 }
211
| any_op expr %prec prefix_op
212 213 214
   { mk_prefix $1 $2 }
| simple_expr list1_simple_expr %prec prec_app
   { mk_expr (mk_apply $1 $2) }
215 216 217 218 219 220
| IF expr THEN expr ELSE expr
   { mk_expr (Eif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { mk_expr (Eif ($2, $4, mk_expr Eskip)) }
| expr SEMICOLON expr
   { mk_expr (Esequence ($1, $3)) }
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
| assertion_kind LOGIC
   { mk_expr (Eassert ($1, lexpr $2)) }
| expr AMPAMP expr
   { mk_expr (Elazy_and ($1, $3)) }
| expr BARBAR expr
   { mk_expr (Elazy_or ($1, $3)) }
| LET lident EQUAL expr IN expr
   { mk_expr (Elet ($2, $4, $6)) }
| GHOST expr
   { mk_expr (Eghost $2) }
| uident COLON expr
   { mk_expr (Elabel ($1, $3)) }
| WHILE expr DO loop_annotation expr DONE
   { mk_expr (Ewhile ($2, $4, $5)) }
;

/* FIXME: prefix operators should be part of simple_expr
   otherwise we can't parse "f !x" */

simple_expr:
| constant
    { mk_expr (Econstant $1) }
| lqualid 
    { mk_expr (Eident $1) }
| LEFTPAR expr RIGHTPAR
    { $2 }
| BEGIN expr END
    { $2 }
| LEFTPAR RIGHTPAR
    { mk_expr Eskip }
| BEGIN END
    { mk_expr Eskip }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

assertion_kind:
| ASSERT { Aassert }
| ASSUME { Aassume }
| CHECK  { Acheck  }
;

loop_annotation:
| loop_invariant loop_variant { { loop_invariant = $1; loop_variant = $2 } }
;

loop_invariant:
| INVARIANT LOGIC { Some (lexpr $2) }
| /* epsilon */   { None            }
;

loop_variant:
| VARIANT LOGIC { Some (lexpr $2) }
| /* epsilon */ { None            }
278 279 280 281 282 283 284
;

constant:
| INTEGER
   { Term.ConstInt $1 }
| REAL
   { Term.ConstReal $1 }
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
;

/*****

ident:
| uident { $1 }
| lident { $1 }
;

ident_rich:
| uident      { $1 }
| lident_rich { $1 }
;

lident_rich:
| lident
    { $1 }
| LEFTPAR UNDERSCORE lident_op UNDERSCORE RIGHTPAR 
    { { id = infix $3; id_loc = loc () } }
| LEFTPAR lident_op UNDERSCORE RIGHTPAR 
    { { id = prefix $2; id_loc = loc () } }
/*
| LEFTPAR UNDERSCORE lident_op RIGHTPAR 
    { { id = postfix $3; id_loc = loc () } }
* /
;

lident_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
| EQUAL { "=" }
;

any_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
;

any_qualid:
| ident                { Qident $1 }
| any_qualid DOT ident { Qdot ($1, $3) }
;

tqualid:
| uident                { Qident $1 }
| any_qualid DOT uident { Qdot ($1, $3) }

qualid:
| ident_rich             { Qident $1 }
| uqualid DOT ident_rich { Qdot ($1, $3) }

params:
| /* epsilon * /                          { [] }
| LEFTPAR list1_param_sep_comma RIGHTPAR { $2 }
;

param:
| primitive_type              { None, $1 }
| lident COLON primitive_type { Some $1, $3 }
;

list1_param_sep_comma:
| param                             { [$1] }
| param COMMA list1_param_sep_comma { $1 :: $3 }
;

primitive_types:
| /* epsilon * /                                   { [] }
| LEFTPAR list1_primitive_type_sep_comma RIGHTPAR { $2 }

logic_type_option:
| /* epsilon * /        { None }
| COLON primitive_type { Some $2 }
;

type_var:
| QUOTE ident { $2 }
;

primitive_type:
| type_var 
   { PPTtyvar $1 }
| lqualid
   { PPTtyapp ([], $1) }
| primitive_type lqualid
   { PPTtyapp ([$1], $2) }
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR lqualid
   { PPTtyapp ($2 :: $4, $6) }
;

list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

list0_ident_sep_comma:
| /* epsilon * /         { [] }
| list1_ident_sep_comma { $1 }
;

list1_ident_sep_comma:
| ident                             { [$1] }
| ident COMMA list1_ident_sep_comma { $1 :: $3 }
;

decl:
| INCLUDE STRING
   { Include (loc_i 2,$2) }
| LET ident EQUAL expr
   { Program (loc_i 2,$2, $4) }
| LET ident binders EQUAL list0_bracket_assertion expr
   { Program (loc_i 2,$2, locate (Slam ($3, $5, force_function_post $6))) }
| LET REC recfun
   { let (loc,p) = $3 in Program (loc,rec_name p, locate p) }
| EXCEPTION ident
   { Exception (loc (), $2, None) }
| EXCEPTION ident OF primitive_type
   { Exception (loc (), $2, Some $4) }
| PARAMETER list1_ident_sep_comma COLON type_v
   { Parameter (loc_i 3, $2, $4) }

type_v:
| simple_type_v ARROW type_c
   { PVarrow ([Ident.anonymous, $1], $3) }
| ident COLON simple_type_v ARROW type_c
   { PVarrow ([($1, $3)], $5) }
| simple_type_v
   { $1 }
;

simple_type_v:
| primitive_type REF      { PVref $1 }
| primitive_type          { PVpure $1 }
| LEFTPAR type_v RIGHTPAR { $2 }
;

type_c:
| LEFTB opt_assertion RIGHTB result effects LEFTB opt_post_condition RIGHTB
   { let id,v = $4 in
     { pc_result_name = id; pc_result_type = v;
       pc_effect = $5; pc_pre = list_of_some $2; pc_post = $7 } }
| type_v
   { ptype_c_of_v $1 }
;

result:
| RETURNS ident COLON type_v { $2, $4 }
| type_v                     { Ident.result, $1 }
;

effects:
| opt_reads opt_writes opt_raises
    { { pe_reads = $1; pe_writes = $2; pe_raises = $3 } }
;

opt_reads:
| /* epsilon * /               { [] }
| READS list0_ident_sep_comma { $2 }
;

opt_writes:
| /* epsilon * /                { [] }
| WRITES list0_ident_sep_comma { $2 }
;

opt_raises:
| /* epsilon * /                { [] }
| RAISES list0_ident_sep_comma { $2 }
;

opt_assertion:
| /* epsilon * /  { None }
| assertion      { Some $1 }
;

assertion:
| lexpr          
    { { pa_name = Anonymous; pa_value = $1; pa_loc = loc () } }
| lexpr AS ident 
    { { pa_name = Name $3; pa_value = $1; pa_loc = loc () } }
;

opt_post_condition:
| /* epsilon * /  { None }
| post_condition { Some $1 }
;

post_condition:
| assertion 
   { $1, [] }
| assertion BAR list1_exn_condition_sep_bar
   { $1, $3 }
| BAR list1_exn_condition_sep_bar
   { Format.eprintf "%awarning: no postcondition; false inserted@\n" 
       Loc.report_position (loc ());
     (* if Options.werror then exit 1; *)
     ({ pa_name = Anonymous; pa_value = mk_pp PPfalse; pa_loc = loc () }, $2) }
;

bracket_assertion:
| LEFTB assertion RIGHTB { $2 }
;

list1_bracket_assertion:
| bracket_assertion                         { [$1] }
| bracket_assertion list1_bracket_assertion { $1 :: $2 }
;

list0_bracket_assertion:
| /* epsilon * /           { [] }
| LEFTB RIGHTB            { [] }
| list1_bracket_assertion { $1 }
;

list1_exn_condition_sep_bar:
| exn_condition                                 { [$1] }
| exn_condition BAR list1_exn_condition_sep_bar { $1 :: $3 }
;

exn_condition:
| ident BIGARROW assertion { $1,$3 }
;

expr:
| simple_expr %prec prec_simple 
   { $1 }
| ident COLONEQUAL expr
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.ref_set), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| ident LEFTSQ expr RIGHTSQ COLONEQUAL expr
   { locate 
       (Sapp (locate 
		(Sapp (locate 
			 (Sapp (locate (Svar Ident.array_set), 
				locate_i 1 (Svar $1))),
			 $3)),
		$6)) }
| IF expr THEN expr ELSE expr
   { locate (Sif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { locate (Sif ($2, $4, locate (Sconst ConstUnit))) }
| WHILE expr DO invariant_variant expr DONE
   { (* syntactic suget for
        try loop { invariant variant } if b then e else raise Exit
        with Exit -> void end *)
     let inv,var = $4 in
     locate 
       (Stry
	  (locate 
	     (Sloop (inv, var, 
		     locate 
		       (Sif ($2, $5,
			     locate (Sraise (exit_exn, None, None)))))),
	     [((exit_exn, None), locate (Sconst ConstUnit))])) }
| IDENT COLON expr
   { locate (Slabel ($1, $3)) }
| LET ident EQUAL expr IN expr
   { locate (Sletin ($2, $4, $6)) }
| LET ident EQUAL REF expr IN expr
   { locate (Sletref ($2, $5, $7)) }
| FUN binders ARROW list0_bracket_assertion expr %prec prec_fun
   { locate (Slam ($2, $4, force_function_post $5)) }
| LET ident binders EQUAL list0_bracket_assertion expr IN expr
   { let b =  force_function_post ~warn:true $6 in
     locate (Sletin ($2, locate (Slam ($3, $5, b)), $8)) }
| LET REC recfun %prec prec_letrec
   { let _loc,p = $3 in locate p }
| LET REC recfun IN expr
   { let _loc,p = $3 in locate (Sletin (rec_name p, locate p, $5)) }
| RAISE ident opt_cast
   { locate (Sraise ($2, None, $3)) }
| RAISE LEFTPAR ident expr RIGHTPAR opt_cast
   { locate (Sraise ($3, Some $4 , $6)) }
| TRY expr WITH bar_ list1_handler_sep_bar END
   { locate (Stry ($2, $5)) }
| ABSURD opt_cast
   { locate (Sabsurd $2) }
| simple_expr list1_simple_expr %prec prec_app
   { locate (app $1 $2) }
| expr BARBAR expr
   { locate (Slazy_or ($1, $3))
     (* let ptrue = locate (Sconst (ConstBool true)) in
     locate (Sif ($1, ptrue, $3)) *) }
| expr AMPAMP expr
   { locate (Slazy_and ($1, $3))
     (* let pf = locate (Sconst (ConstBool false)) in
     locate (Sif ($1, $3, pf)) *) }
| NOT expr
   { locate (Snot $2)
     (* let pf = locate (Sconst (ConstBool false)) in
     let pt = locate (Sconst (ConstBool true)) in
     locate (Sif ($2, pf, pt)) *) }
| expr relation_id expr %prec prec_relation
   { bin_op $2 $1 $3 }
| expr PLUS expr
   { bin_op (loc_i 2, Ident.t_add) $1 $3 }
| expr MINUS expr
   { bin_op (loc_i 2, Ident.t_sub) $1 $3 }
| expr TIMES expr
   { bin_op (loc_i 2, Ident.t_mul) $1 $3 }
| expr SLASH expr
   { bin_op (loc_i 2, Ident.t_div) $1 $3 }
| expr PERCENT expr
   { bin_op (loc_i 2, Ident.t_mod_int) $1 $3 }
| MINUS expr %prec uminus
   { un_op (loc_i 1, Ident.t_neg) $2 }
| expr SEMICOLON expr
   { locate (Sseq ($1, $3)) }
| ASSERT list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`ASSERT,$2, $4)) }
| CHECK list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`CHECK,$2, $4)) }
| expr LEFTB post_condition RIGHTB
   { locate (Spost ($1, $3, Transparent)) }
| expr LEFTBLEFTB post_condition RIGHTBRIGHTB
   { locate (Spost ($1, $3, Opaque)) }
;

simple_expr:
| ident %prec prec_ident
   { locate (Svar $1) }
| INTEGER
   { locate (Sconst (ConstInt $1)) }
| FLOAT
   { let f = $1 in locate (Sconst (ConstFloat f)) }
| VOID
   { locate (Sconst ConstUnit) }
| TRUE
   { locate (Sconst (ConstBool true)) }
| FALSE
   { locate (Sconst (ConstBool false)) }
| BANG ident
   { locate (Sderef $2) }
| ident LEFTSQ expr RIGHTSQ
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.array_get), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| LEFTSQ type_c RIGHTSQ
   { locate (Sany $2) }
| LEFTPAR expr RIGHTPAR
   { $2 }
| BEGIN expr END
   { $2 }
;

relation_id:
| LT    { loc (), Ident.t_lt }
| LE    { loc (), Ident.t_le }
| GT    { loc (), Ident.t_gt }
| GE    { loc (), Ident.t_ge }
| EQUAL { loc (), Ident.t_eq }
| NOTEQ { loc (), Ident.t_neq }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

list1_handler_sep_bar:
| handler                           { [$1] }
| handler BAR list1_handler_sep_bar { $1 :: $3 }
;

handler:
| ident ARROW expr       { (($1, None), $3) }
| ident ident ARROW expr { (($1, Some $2), $4) }
;

opt_cast:
| /* epsilon * / { None }
| COLON type_v  { Some $2 }
;

invariant_variant:
| /* epsilon * / { None, None }
| LEFTB opt_invariant RIGHTB { $2, None }
| LEFTB opt_invariant VARIANT variant RIGHTB { $2, Some $4 }
;

opt_invariant:
| /* epsilon * /       { None }
| INVARIANT assertion { Some $2 }
;

recfun:
| ident binders COLON type_v opt_variant EQUAL 
  list0_bracket_assertion expr %prec prec_recfun
   { (loc_i 1),Srec ($1, $2, $4, $5, $7, force_function_post $8) }
;

opt_variant:
| LEFTB VARIANT variant RIGHTB { Some $3 } 
| /* epsilon * /                { None }
;

variant:
| lexpr FOR ident { ($1, $3) }
| lexpr           { ($1, Ident.t_zwf_zero) }
;

binders:
| list1_binder { List.flatten $1 }
;

list1_binder:
| binder              { [$1] }
| binder list1_binder { $1 :: $2 }
;

binder:
| LEFTPAR RIGHTPAR
   { [Ident.anonymous, PVpure PPTunit] }
| LEFTPAR list1_ident_sep_comma COLON type_v RIGHTPAR 
   { List.map (fun s -> (s, $4)) $2 }
;

*****/