blocking_semantics3.mlw 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

23
(** ident for mutable variables *)
24 25
type mident

26 27 28
axiom mident_decide :
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

29
(** ident for immutable variables *)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
type ident = {| ident_index : int |}

(** Terms *)
type term_node =
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term

with term = {| term_node : term_node;
               term_maxvar : int;
             |}

predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
  | {| term_node = Tvalue _ |} -> false
  | {| term_node = Tvar i |} -> x=i
  | {| term_node = Tderef _ |} -> false
  | {| term_node = Tbin t1 _ t2 |} -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
  end

predicate term_inv (t:term) =
  forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar

function mk_tvalue (v:value) : term =
   {| term_node = Tvalue v; term_maxvar = -1 |}

lemma mk_tvalue_inv :
   forall v:value. term_inv (mk_tvalue v)

function mk_tvar (i:ident) : term =
   {| term_node = Tvar i; term_maxvar = i.ident_index |}

lemma mk_tvar_inv :
   forall i:ident. term_inv (mk_tvar i)

function mk_tderef (r:mident) : term =
   {| term_node = Tderef r; term_maxvar = -1 |}

lemma mk_tderef_inv :
   forall r:mident. term_inv (mk_tderef r)

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
   {| term_node = Tbin t1 o t2;
      term_maxvar = max t1.term_maxvar t2.term_maxvar |}

lemma mk_tbin_inv :
   forall t1 t2:term, o:operator. term_inv t1 /\ term_inv t2 ->
     term_inv (mk_tbin t1 o t2)


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

90 91 92 93 94 95 96 97
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
98

99 100 101
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
      forall sigma: type_env, pi:type_stack, v:value, m:int.
	type_term sigma pi {| term_node = Tvalue v; term_maxvar = m |} (type_value v)
  | Type_var :
      forall sigma: type_env, pi:type_stack, v: ident, m:int, ty:datatype.
        (get_vartype v pi = ty) ->
        type_term sigma pi {| term_node = Tvar v ; term_maxvar = m |} ty
  | Type_deref :
      forall sigma: type_env, pi:type_stack, v: mident, m:int, ty:datatype.
        (get_reftype v sigma = ty) ->
        type_term sigma pi {| term_node = Tderef v; term_maxvar = m |} ty
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
        m:int, ty1 ty2 ty:datatype.
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
        type_term sigma pi {| term_node = Tbin t1 op t2; term_maxvar = m |} ty

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

184 185 186 187 188 189 190 191 192 193 194
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
195
	(get_reftype x sigma = ty) ->
196 197 198 199 200 201 202 203 204 205
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
206
	type_fmla sigma pi p ->
207 208 209
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
210
	type_fmla sigma pi inv ->
211 212 213
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
  | {| term_node = Tvalue v |} -> v
  | {| term_node = Tvar id |} -> get_stack id pi
  | {| term_node = Tderef id |} -> get_env id sigma
  | {| term_node = Tbin t1 op t2 |} ->
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

257 258 259 260 261 262 263 264 265

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b


266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tvar _ |} -> t
  | {| term_node = Tderef x |} -> if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tderef _ |} -> t
  | {| term_node = Tvar x |} ->
      if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
  id.ident_index > t.term_maxvar

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
306 307 308 309 310
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
	  
311
lemma eval_msubst_term:
312
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

lemma eval_subst_term:
  forall sigma:env, pi:stack, e:term, x:ident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (subst_term e x v) =
    eval_term sigma (Cons (x, (get_stack v pi)) pi) e

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
362 363 364 365
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
366

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
367
(* Need it for monotonicity and wp_reduction *)
368 369 370 371 372 373
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
374 375 376 377 378
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
379

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
380 381 382 383 384
(* lemma eval_swap: *)
(*   forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value. *)
(*     id1 <> id2 -> *)
(*     (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <-> *)
(*     eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f) *)
385

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
386 387 388 389
(* lemma eval_same_var: *)
(*   forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value. *)
(*     eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <-> *)
(*     eval_fmla sigma (Cons (id,v1) pi) f *)
390

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
391
 (* Need it for monotonicity*)
392 393 394 395 396
lemma eval_change_free :
  forall f:fmla, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
397
(** [valid_fmla f] is true when [f] is valid in any environment *)
398 399
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

400
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
401 402 403 404 405 406
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
407

408
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
409 410 411 412 413 414 415 416 417 418 419 420
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
421

422 423 424 425 426 427 428 429
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
430 431 432 433 434
  end


(** small-steps semantics for expressions *)

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
450 451

  | one_step_if_true:
452 453 454
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
455 456

  | one_step_if_false:
457 458 459
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
460 461 462 463 464

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
465
          one_step sigma pi (Sassert f) sigma pi Sskip
466

467 468
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
469 470
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
471 472 473 474
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
475
  | one_step_while_false:
476 477 478 479 480
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
481 482 483

 (** many steps of execution *)

484
 inductive many_steps env stack stmt env stack stmt int =
485
   | many_steps_refl:
486
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
487
   | many_steps_trans:
488 489 490 491
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
492

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
493 494 495 496
(* Not neede *)
(* lemma steps_non_neg: *)
(*   forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int. *)
(*     many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0 *)
497

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
498
(* Used by Hoare_logic/seq_rule*)
499
  lemma many_steps_seq:
500 501
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
502
      exists sigma2:env, pi2:stack, n1 n2:int.
503 504
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
505 506
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
507 508 509 510 511
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
512 513 514 515 516


(** {3 Hoare triples} *)

(** partial correctness *)
517
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
518
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
519 520 521
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
522 523

(*** total correctness *)
524
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
525
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
526 527 528
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
557
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
558 559 560
      IdMap.get sigma' y = Vint 42

goal If42 :
561
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
562
      one_step my_sigma my_pi
563 564 565 566 567
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
568 569 570 571 572 573 574 575 576 577 578 579 580 581
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
582
  forall p p' q q':fmla, s:stmt.
583
  valid_fmla (Fimplies p' p) ->
584
  valid_triple p s q ->
585
  valid_fmla (Fimplies q q') ->
586
  valid_triple p' s q'
587

588 589
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
590 591

lemma assign_rule:
592 593 594
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
595 596

lemma seq_rule:
597 598 599
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
600 601

lemma if_rule:
602 603 604 605
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
606 607 608

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
609
  valid_triple p (Sassert f) p
610 611 612

lemma assert_rule_ext:
  forall f p:fmla.
613
  valid_triple (Fimplies f p) (Sassert f) p
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
665 666 667 668 669 670 671
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
672 673
  end

674
  function fresh_from (f:fmla) (s:stmt) : ident
675

676
  (* Need it for monotonicity*)
677 678
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
679

680 681
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
682

683
  function abstract_effects (s:stmt) (f:fmla) : fmla
684

MARCHE Claude's avatar
MARCHE Claude committed
685 686 687 688 689
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
690 691
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
692 693
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
694

695 696 697 698
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
699
        (* asymmetric and *)
700 701 702 703 704 705 706 707 708
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
709 710
        Fand inv
          (abstract_effects body
711 712 713
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
714 715 716

    end

MARCHE Claude's avatar
MARCHE Claude committed
717 718 719 720 721 722
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


723 724
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
725
  (*   fresh_in_stmt id e -> *)
726 727 728
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
729
    forall s:stmt, p q:fmla.
730
      valid_fmla (Fimplies p q)
731
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
732 733 734 735 736 737

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
738 739

  lemma wp_reduction:
740 741
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
742
    forall q:fmla.
743 744
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
745 746

  lemma progress:
747 748 749
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
750
(* useful ?
751
      type_fmla sigmat pit q ->
752
*)
753 754 755 756
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
757 758 759 760 761 762 763 764 765

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)