blocking_semantics3.mlw 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
Asma Tafat's avatar
Asma Tafat committed
12
use export list.Append
13 14 15 16 17 18 19 20 21 22 23
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

24
(** ident for mutable variables *)
25 26
type mident

27 28 29
axiom mident_decide :
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

30
(** ident for immutable variables *)
31
type ident = {| ident_index : int |}
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
32 33 34
 
axiom ident_decide :
  forall m1 m2: ident. m1 = m2 \/ m1 <> m2
35 36

(** Terms *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
37
type term =
38 39 40 41 42 43 44 45
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term


predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
46 47 48 49
  | Tvalue _  -> false
  |  Tvar i  -> x=i
  |  Tderef _  -> false
  |  Tbin t1 _ t2 -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
50 51
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
52 53
(* predicate term_inv (t:term) = *)
(*   forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar *)
54 55

function mk_tvalue (v:value) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
56
   Tvalue v
57 58

function mk_tvar (i:ident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
59
   Tvar i
60 61

function mk_tderef (r:mident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
62
   Tderef r
63 64

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
65
    Tbin t1 o t2
66 67 68 69 70 71 72 73 74 75 76


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

77 78 79 80 81 82 83 84
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
85

86 87 88
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

Asma Tafat's avatar
Asma Tafat committed
111
    
112 113 114 115 116
type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
117 118
      forall sigma: type_env, pi:type_stack, v:value.
	type_term sigma pi  (Tvalue v) (type_value v)
119
  | Type_var :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
120
      forall sigma: type_env, pi:type_stack, v: ident, ty:datatype.
121
        (get_vartype v pi = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
122
        type_term sigma pi (Tvar v) ty
123
  | Type_deref :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
124
      forall sigma: type_env, pi:type_stack, v: mident, ty:datatype.
125
        (get_reftype v sigma = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
126
        type_term sigma pi (Tderef v) ty
127 128
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
129
        ty1 ty2 ty:datatype.
130 131 132
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
133
        type_term sigma pi (Tbin t1 op t2) ty
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

172 173 174 175 176 177 178 179 180 181 182
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
183
	(get_reftype x sigma = ty) ->
184 185 186 187 188 189 190 191 192 193
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
194
	type_fmla sigma pi p ->
195 196 197
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
198
	type_fmla sigma pi inv ->
199 200 201
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
238 239 240 241
  | Tvalue v -> v
  |  Tvar id  -> get_stack id pi
  |  Tderef id  -> get_env id sigma
  |  Tbin t1 op t2  ->
242
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
Asma Tafat's avatar
Asma Tafat committed
243
end
244

245 246 247 248 249 250 251 252 253

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
275 276 277
  | Tvalue _ | Tvar _  -> t
  | Tderef x -> if r = x then mk_tvar v else t
  | Tbin t1 op t2  ->
278 279 280 281 282
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
283 284
  | Tvalue _ | Tderef _  -> t
  | Tvar x  ->
285
      if r = x then mk_tvar v else t
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
286
  | Tbin t1 op t2  ->
287 288 289 290 291
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
292
    not (var_occurs_in_term id t)
293

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
294 295 296 297
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
Asma Tafat's avatar
Asma Tafat committed
298
 
299
lemma eval_msubst_term:
300
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
301 302 303 304
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
305 306 307 308 309
(* lemma eval_subst_term: *)
(*   forall sigma:env, pi:stack, e:term, x:ident, v:ident. *)
(*     fresh_in_term v e -> *)
(*     eval_term sigma pi (subst_term e x v) = *)
(*     eval_term sigma (Cons (x, (get_stack v pi)) pi) e *)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
350 351 352 353
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
354

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
355
(* Need it for monotonicity and wp_reduction *)
356 357 358 359 360 361
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
362 363 364 365 366
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
367

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
368 369 370 371 372 373 374 375 376 377
lemma eval_same_var_term:
  forall t:term, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_term sigma (Cons (id,v1) (Cons (id,v2) pi)) t =
    eval_term sigma (Cons (id,v1) pi) t

lemma eval_same_var:
  forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <->
    eval_fmla sigma (Cons (id,v1) pi) f

Asma Tafat's avatar
Asma Tafat committed
378 379 380 381 382 383
lemma eval_swap_term_any:
  forall t:term, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_term sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) t =
    eval_term sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) t)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
384 385 386 387 388 389
lemma eval_swap_term:
  forall t:term, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_term sigma (Cons (id1,v1) (Cons (id2,v2) pi)) t =
    eval_term sigma (Cons (id2,v2) (Cons (id1,v1) pi)) t)

Asma Tafat's avatar
Asma Tafat committed
390 391 392 393 394 395
lemma eval_swap_any:
  forall f:fmla, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) f <->
    eval_fmla sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
396 397 398 399 400
lemma eval_swap:
  forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)
401

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
402
 (* Need it for monotonicity*)
403
lemma eval_change_free :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
404
  forall sigma:env, pi:stack, f:fmla, id:ident, v:value.
405 406 407
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
408
(** [valid_fmla f] is true when [f] is valid in any environment *)
409 410
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

411
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
412 413 414 415 416 417
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
418

419
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
420 421 422 423 424 425 426 427 428 429 430 431
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
432

433 434 435 436 437 438 439 440
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
441 442 443 444 445
  end


(** small-steps semantics for expressions *)

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
461 462

  | one_step_if_true:
463 464 465
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
466 467

  | one_step_if_false:
468 469 470
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
471 472 473 474 475

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
476
          one_step sigma pi (Sassert f) sigma pi Sskip
477

478 479
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
480 481
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
482 483 484 485
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
486
  | one_step_while_false:
487 488 489 490 491
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
492 493 494

 (** many steps of execution *)

495
 inductive many_steps env stack stmt env stack stmt int =
496
   | many_steps_refl:
497
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
498
   | many_steps_trans:
499 500 501 502
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
503

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
504 505 506
lemma steps_non_neg:
  forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
    many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
507

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
508
(* Used by Hoare_logic/seq_rule*)
509
  lemma many_steps_seq:
510 511
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
512
      exists sigma2:env, pi2:stack, n1 n2:int.
513 514
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
515 516
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
517 518 519 520 521
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
522 523 524 525 526


(** {3 Hoare triples} *)

(** partial correctness *)
527
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
528
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
529 530 531
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
532 533

(*** total correctness *)
534
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
535
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
536 537 538
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
567
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
568 569 570
      IdMap.get sigma' y = Vint 42

goal If42 :
571
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
572
      one_step my_sigma my_pi
573 574 575 576 577
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
578 579 580 581 582 583 584 585 586 587 588 589 590 591
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
592
  forall p p' q q':fmla, s:stmt.
593
  valid_fmla (Fimplies p' p) ->
594
  valid_triple p s q ->
595
  valid_fmla (Fimplies q q') ->
596
  valid_triple p' s q'
597

598 599
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
600 601

lemma assign_rule:
602 603 604
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
605 606

lemma seq_rule:
607 608 609
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
610 611

lemma if_rule:
612 613 614 615
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
616 617 618

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
619
  valid_triple p (Sassert f) p
620 621 622

lemma assert_rule_ext:
  forall f p:fmla.
623
  valid_triple (Fimplies f p) (Sassert f) p
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
675 676 677 678 679 680 681
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
682 683
  end

684
  function fresh_from (f:fmla) (s:stmt) : ident
685

686
  (* Need it for monotonicity*)
687 688
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
689

690 691
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
692

693
  function abstract_effects (s:stmt) (f:fmla) : fmla
694

MARCHE Claude's avatar
MARCHE Claude committed
695 696 697 698 699
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
700 701
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
702 703
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
704

705 706 707 708
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
709
        (* asymmetric and *)
710 711 712 713 714 715 716 717 718
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
719 720
        Fand inv
          (abstract_effects body
721 722 723
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
724 725 726

    end

MARCHE Claude's avatar
MARCHE Claude committed
727 728 729 730 731 732
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


733 734
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
735
  (*   fresh_in_stmt id e -> *)
736 737 738
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
739
    forall s:stmt, p q:fmla.
740
      valid_fmla (Fimplies p q)
741
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
742 743 744 745 746 747

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
748 749

  lemma wp_reduction:
750 751
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
752
    forall q:fmla.
753 754
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
755 756

  lemma progress:
757 758 759
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
760
(* useful ?
761
      type_fmla sigmat pit q ->
762
*)
763 764 765 766
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
767 768 769 770 771 772 773 774 775

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)