verifythis_fm2012_lcp_LCP_sorted_ge_1.v 9.82 KB
Newer Older
MARCHE Claude's avatar
MARCHE Claude committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require int.Int.

(* Why3 assumption *)
Definition unit  := unit.

Axiom map : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, Type.
Parameter map_WhyType : forall (a:Type) {a_WT:WhyType a}
  (b:Type) {b_WT:WhyType b}, WhyType (map a b).
Existing Instance map_WhyType.

Parameter get: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b.

Parameter set: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b -> (map a b).

Axiom Select_eq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) ->
  ((get (set m a1 b1) a2) = b1).

Axiom Select_neq : forall {a:Type} {a_WT:WhyType a}
  {b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a),
  forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)).

Parameter const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  b -> (map a b).

Axiom Const : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1).

(* Why3 assumption *)
Inductive array (a:Type) {a_WT:WhyType a} :=
  | mk_array : Z -> (map Z a) -> array a.
Axiom array_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
Existing Instance array_WhyType.
Implicit Arguments mk_array [[a] [a_WT]].

(* Why3 assumption *)
Definition elts {a:Type} {a_WT:WhyType a}(v:(array a)): (map Z a) :=
  match v with
  | (mk_array x x1) => x1
  end.

(* Why3 assumption *)
Definition length {a:Type} {a_WT:WhyType a}(v:(array a)): Z :=
  match v with
  | (mk_array x x1) => x
  end.

(* Why3 assumption *)
Definition get1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z): a :=
  (get (elts a1) i).

(* Why3 assumption *)
Definition set1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z) (v:a): (array
  a) := (mk_array (length a1) (set (elts a1) i v)).

(* Why3 assumption *)
Definition make {a:Type} {a_WT:WhyType a}(n:Z) (v:a): (array a) :=
  (mk_array n (const v:(map Z a))).

(* Why3 assumption *)
Definition array_bounded(a:(array Z)) (b:Z): Prop := forall (i:Z),
  ((0%Z <= i)%Z /\ (i < (length a))%Z) -> ((0%Z <= (get1 a i))%Z /\ ((get1 a
  i) < b)%Z).

(* Why3 assumption *)
Definition map_eq_sub {a:Type} {a_WT:WhyType a}(a1:(map Z a)) (a2:(map Z a))
  (l:Z) (u:Z): Prop := forall (i:Z), ((l <= i)%Z /\ (i < u)%Z) -> ((get a1
  i) = (get a2 i)).

(* Why3 assumption *)
Definition exchange {a:Type} {a_WT:WhyType a}(a1:(map Z a)) (a2:(map Z a))
  (i:Z) (j:Z): Prop := ((get a1 i) = (get a2 j)) /\ (((get a2 i) = (get a1
  j)) /\ forall (k:Z), ((~ (k = i)) /\ ~ (k = j)) -> ((get a1 k) = (get a2
  k))).

Axiom exchange_set : forall {a:Type} {a_WT:WhyType a}, forall (a1:(map Z a)),
  forall (i:Z) (j:Z), (exchange a1 (set (set a1 i (get a1 j)) j (get a1 i)) i
  j).

(* Why3 assumption *)
Inductive permut_sub{a:Type} {a_WT:WhyType a}  : (map Z a) -> (map Z a) -> Z
  -> Z -> Prop :=
  | permut_refl : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
      (map_eq_sub a1 a2 l u) -> (permut_sub a1 a2 l u)
  | permut_sym : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
      (permut_sub a1 a2 l u) -> (permut_sub a2 a1 l u)
  | permut_trans : forall (a1:(map Z a)) (a2:(map Z a)) (a3:(map Z a)),
      forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> ((permut_sub a2 a3 l
      u) -> (permut_sub a1 a3 l u))
  | permut_exchange : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z)
      (u:Z) (i:Z) (j:Z), ((l <= i)%Z /\ (i < u)%Z) -> (((l <= j)%Z /\
      (j < u)%Z) -> ((exchange a1 a2 i j) -> (permut_sub a1 a2 l u))).

Axiom permut_weakening : forall {a:Type} {a_WT:WhyType a}, forall (a1:(map Z
  a)) (a2:(map Z a)), forall (l1:Z) (r1:Z) (l2:Z) (r2:Z), (((l1 <= l2)%Z /\
  (l2 <= r2)%Z) /\ (r2 <= r1)%Z) -> ((permut_sub a1 a2 l2 r2) ->
  (permut_sub a1 a2 l1 r1)).

Axiom permut_eq : forall {a:Type} {a_WT:WhyType a}, forall (a1:(map Z a))
  (a2:(map Z a)), forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> forall (i:Z),
  ((i < l)%Z \/ (u <= i)%Z) -> ((get a2 i) = (get a1 i)).

Axiom permut_exists : forall {a:Type} {a_WT:WhyType a}, forall (a1:(map Z a))
  (a2:(map Z a)), forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> forall (i:Z),
  ((l <= i)%Z /\ (i < u)%Z) -> exists j:Z, ((l <= j)%Z /\ (j < u)%Z) /\
  ((get a2 i) = (get a1 j)).

(* Why3 assumption *)
Definition exchange1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (a2:(array a))
  (i:Z) (j:Z): Prop := (exchange (elts a1) (elts a2) i j).

(* Why3 assumption *)
Definition permut_sub1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (a2:(array a))
  (l:Z) (u:Z): Prop := (permut_sub (elts a1) (elts a2) l u).

(* Why3 assumption *)
Definition permut {a:Type} {a_WT:WhyType a}(a1:(array a)) (a2:(array
  a)): Prop := ((length a1) = (length a2)) /\ (permut_sub (elts a1) (elts a2)
  0%Z (length a1)).

Axiom exchange_permut : forall {a:Type} {a_WT:WhyType a}, forall (a1:(array
  a)) (a2:(array a)) (i:Z) (j:Z), (exchange1 a1 a2 i j) ->
  (((length a1) = (length a2)) -> (((0%Z <= i)%Z /\ (i < (length a1))%Z) ->
  (((0%Z <= j)%Z /\ (j < (length a1))%Z) -> (permut a1 a2)))).

Axiom permut_sym1 : forall {a:Type} {a_WT:WhyType a}, forall (a1:(array a))
  (a2:(array a)), (permut a1 a2) -> (permut a2 a1).

Axiom permut_trans1 : forall {a:Type} {a_WT:WhyType a}, forall (a1:(array a))
  (a2:(array a)) (a3:(array a)), (permut a1 a2) -> ((permut a2 a3) ->
  (permut a1 a3)).

(* Why3 assumption *)
Definition array_eq_sub {a:Type} {a_WT:WhyType a}(a1:(array a)) (a2:(array
  a)) (l:Z) (u:Z): Prop := (map_eq_sub (elts a1) (elts a2) l u).

(* Why3 assumption *)
Definition array_eq {a:Type} {a_WT:WhyType a}(a1:(array a)) (a2:(array
  a)): Prop := ((length a1) = (length a2)) /\ (array_eq_sub a1 a2 0%Z
  (length a1)).

Axiom array_eq_sub_permut : forall {a:Type} {a_WT:WhyType a},
  forall (a1:(array a)) (a2:(array a)) (l:Z) (u:Z), (array_eq_sub a1 a2 l
  u) -> (permut_sub1 a1 a2 l u).

Axiom array_eq_permut : forall {a:Type} {a_WT:WhyType a}, forall (a1:(array
  a)) (a2:(array a)), (array_eq a1 a2) -> (permut a1 a2).

Axiom permut_bounded : forall (a1:(array Z)) (a2:(array Z)) (n:Z),
  ((permut a1 a2) /\ (array_bounded a1 n)) -> (array_bounded a2 n).

(* Why3 assumption *)
Definition is_common_prefix(a:(array Z)) (x:Z) (y:Z) (l:Z): Prop :=
  (0%Z <= l)%Z /\ (((x + l)%Z <= (length a))%Z /\
  (((y + l)%Z <= (length a))%Z /\ forall (i:Z), ((0%Z <= i)%Z /\
  (i < l)%Z) -> ((get1 a (x + i)%Z) = (get1 a (y + i)%Z)))).

Axiom common_prefix_eq : forall (a:(array Z)) (x:Z), ((0%Z <= x)%Z /\
  (x < (length a))%Z) -> (is_common_prefix a x x ((length a) - x)%Z).

Axiom common_prefix_eq2 : forall (a:(array Z)) (x:Z), ((0%Z <= x)%Z /\
  (x < (length a))%Z) -> ~ (is_common_prefix a x x
  (((length a) - x)%Z + 1%Z)%Z).

Axiom not_common_prefix_if_last_different : forall (a:(array Z)) (x:Z) (y:Z)
  (l:Z), ((0%Z < l)%Z /\ (((x + l)%Z < (length a))%Z /\
  (((y + l)%Z < (length a))%Z /\ ~ ((get1 a (x + (l - 1%Z)%Z)%Z) = (get1 a
  (y + (l - 1%Z)%Z)%Z))))) -> ~ (is_common_prefix a x y l).

Parameter longest_common_prefix: (array Z) -> Z -> Z -> Z.

Axiom lcp_spec : forall (a:(array Z)) (x:Z) (y:Z) (l:Z), (((0%Z <= x)%Z /\
  (x < (length a))%Z) /\ ((0%Z <= y)%Z /\ (y < (length a))%Z)) ->
  ((l = (longest_common_prefix a x y)) <-> ((is_common_prefix a x y l) /\
  ~ (is_common_prefix a x y (l + 1%Z)%Z))).

Axiom lcp_is_cp : forall (a:(array Z)) (x:Z) (y:Z), (((0%Z <= x)%Z /\
  (x < (length a))%Z) /\ ((0%Z <= y)%Z /\ (y < (length a))%Z)) ->
  (is_common_prefix a x y (longest_common_prefix a x y)).

Axiom lcp_eq : forall (a:(array Z)) (x:Z) (y:Z), (((0%Z <= x)%Z /\
  (x < (length a))%Z) /\ ((0%Z <= y)%Z /\ (y < (length a))%Z)) ->
  forall (i:Z), ((0%Z <= i)%Z /\ (i < (longest_common_prefix a x y))%Z) ->
  ((get1 a (x + i)%Z) = (get1 a (y + i)%Z)).

Axiom lcp_refl : forall (a:(array Z)) (x:Z), ((0%Z <= x)%Z /\
  (x < (length a))%Z) -> ((longest_common_prefix a x
  x) = ((length a) - x)%Z).

(* Why3 assumption *)
Inductive ref (a:Type) {a_WT:WhyType a} :=
  | mk_ref : a -> ref a.
Axiom ref_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (ref a).
Existing Instance ref_WhyType.
Implicit Arguments mk_ref [[a] [a_WT]].

(* Why3 assumption *)
Definition contents {a:Type} {a_WT:WhyType a}(v:(ref a)): a :=
  match v with
  | (mk_ref x) => x
  end.

(* Why3 assumption *)
Definition le(a:(array Z)) (x:Z) (y:Z): Prop := let n := (length a) in
  (((0%Z <= x)%Z /\ (x < n)%Z) /\ (((0%Z <= y)%Z /\ (y < n)%Z) /\ let l :=
  (longest_common_prefix a x y) in (((x + l)%Z = n) \/ (((x + l)%Z < n)%Z /\
  (((y + l)%Z < n)%Z /\ ((get1 a (x + l)%Z) <= (get1 a (y + l)%Z))%Z))))).

Axiom le_refl : forall (a:(array Z)) (x:Z), ((0%Z <= x)%Z /\
  (x < (length a))%Z) -> (le a x x).

Axiom le_trans : forall (a:(array Z)) (x:Z) (y:Z) (z:Z), (((0%Z <= x)%Z /\
  (x < (length a))%Z) /\ (((0%Z <= y)%Z /\ (y < (length a))%Z) /\
  (((0%Z <= z)%Z /\ (z < (length a))%Z) /\ ((le a x y) /\ (le a y z))))) ->
  (le a x z).

(* Why3 assumption *)
Definition sorted_sub(a:(array Z)) (data:(array Z)) (l:Z) (u:Z): Prop :=
  forall (i1:Z) (i2:Z), (((l <= i1)%Z /\ (i1 <= i2)%Z) /\ (i2 < u)%Z) ->
  (le a (get1 data i1) (get1 data i2)).

Axiom sorted_bounded : forall (a:(array Z)) (data:(array Z)) (l:Z) (u:Z)
  (i:Z), (((l <= i)%Z /\ (i < u)%Z) /\ (sorted_sub a data l u)) ->
  ((0%Z <= (get1 data i))%Z /\ ((get1 data i) < (length a))%Z).

Axiom sorted_le : forall (a:(array Z)) (data:(array Z)) (l:Z) (u:Z) (i:Z)
  (x:Z), (((l <= i)%Z /\ (i < u)%Z) /\ ((sorted_sub a data l u) /\ (le a x
  (get1 data l)))) -> (le a x (get1 data i)).

Require Import Why3.
Ltac ae := why3 "alt-ergo" timelimit 3.

(* Why3 goal *)
Theorem sorted_ge : forall (a:(array Z)) (data:(array Z)) (l:Z) (u:Z) (i:Z)
  (x:Z), ((sorted_sub a data l u) /\ ((le a (get1 data u) x) /\
  ((l <= i)%Z /\ (i < u)%Z))) -> (le a (get1 data i) x).
intros a data l u i x (h1,(h2,(h3,h4))).
apply le_trans with (get1 data u).
ae.
Qed.