mlw_typing.ml 23.9 KB
Newer Older
1 2
(**************************************************************************)
(*                                                                        *)
MARCHE Claude's avatar
MARCHE Claude committed
3
(*  Copyright (C) 2010-2012                                               *)
4 5 6
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
MARCHE Claude's avatar
MARCHE Claude committed
7
(*    Guillaume Melquiond                                                 *)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Util
23
open Ident
24 25 26
open Ty
open Term
open Decl
27 28 29
open Theory
open Env
open Ptree
30
open Mlw_dtree
31 32 33
open Mlw_ty
open Mlw_expr
open Mlw_decl
34 35
open Mlw_module

36 37
(** errors *)

38
exception DuplicateProgVar of string
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
exception DuplicateTypeVar of string
(*
exception PredicateExpected
exception TermExpected
exception FSymExpected of lsymbol
exception PSymExpected of lsymbol
exception ClashTheory of string
exception UnboundTheory of qualid
exception UnboundType of string list
*)
exception UnboundTypeVar of string
exception UnboundSymbol of string list

let error = Loc.error
let errorm = Loc.errorm

let rec print_qualid fmt = function
  | Qident s -> Format.fprintf fmt "%s" s.id
  | Qdot (m, s) -> Format.fprintf fmt "%a.%s" print_qualid m s.id

let () = Exn_printer.register (fun fmt e -> match e with
  | DuplicateTypeVar s ->
61 62 63
      Format.fprintf fmt "Type parameter %s is used twice" s
  | DuplicateProgVar s ->
      Format.fprintf fmt "Parameter %s is used twice" s
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
(*
  | PredicateExpected ->
      Format.fprintf fmt "syntax error: predicate expected"
  | TermExpected ->
      Format.fprintf fmt "syntax error: term expected"
  | FSymExpected ls ->
      Format.fprintf fmt "%a is not a function symbol" Pretty.print_ls ls
  | PSymExpected ls ->
      Format.fprintf fmt "%a is not a predicate symbol" Pretty.print_ls ls
  | ClashTheory s ->
      Format.fprintf fmt "Clash with previous theory %s" s
  | UnboundTheory q ->
      Format.fprintf fmt "unbound theory %a" print_qualid q
  | UnboundType sl ->
      Format.fprintf fmt "Unbound type '%a'"
        (Pp.print_list Pp.dot Pp.pp_print_string) sl
*)
  | UnboundTypeVar s ->
      Format.fprintf fmt "unbound type variable '%s" s
  | UnboundSymbol sl ->
      Format.fprintf fmt "Unbound symbol '%a'"
        (Pp.print_list Pp.dot Format.pp_print_string) sl
  | _ -> raise e)

(* TODO: let type_only = Debug.test_flag Typing.debug_type_only in *)

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
(** Typing type expressions *)

let ts_arrow =
  let a = create_tvsymbol (Ident.id_fresh "a") in
  let b = create_tvsymbol (Ident.id_fresh "b") in
  Ty.create_tysymbol (Ident.id_fresh "arrow") [a; b] None

let ts_region =
  let a = create_tvsymbol (Ident.id_fresh "a") in
  let b = create_tvsymbol (Ident.id_fresh "b") in
  Ty.create_tysymbol (Ident.id_fresh "region") [a; b] None

(* let rec ity_of_dty = function *)
(*   | Tyvar { type_val = Some t } -> *)
(*       ty_of_dty t *)
(*   | Tyvar { type_val = None; user = false; type_var_loc = loc } -> *)
(*       error ?loc (AnyMessage "undefined type variable") *)
(*   | Tyvar { tvsymbol = tv } -> *)
(*       ty_var tv *)
(*   | Tyapp (s, tl) -> *)
(*       ty_app s (List.map ty_of_dty tl) *)

(** Typing program expressions *)

let rec extract_labels labs loc e = match e.Ptree.expr_desc with
  | Ptree.Enamed (Ptree.Lstr s, e) -> extract_labels (s :: labs) loc e
  | Ptree.Enamed (Ptree.Lpos p, e) -> extract_labels labs (Some p) e
  | Ptree.Ecast  (e, ty) ->
      let labs, loc, d = extract_labels labs loc e in
      labs, loc, Ptree.Ecast ({ e with Ptree.expr_desc = d }, ty)
  | e -> List.rev labs, loc, e

type denv = {
  uc     : module_uc;
  locals : Denv.dty Mstr.t;
  denv   : Typing.denv; (* for user type variables only *)
}

let create_denv uc =
  { uc = uc;
    locals = Mstr.empty;
    denv = Typing.create_denv (); }

let rec dexpr ~userloc denv e =
  let loc = e.Ptree.expr_loc in
  let labs, userloc, d = extract_labels [] userloc e in
  let d, ty = dexpr_desc ~userloc denv loc d in
  let loc = def_option loc userloc in
  let e = {
    dexpr_desc = d; dexpr_loc = loc; dexpr_lab = labs; dexpr_type = ty; }
  in
  e

and dexpr_desc ~userloc denv _loc = function
  | Ptree.Eident (Qident {id=x}) when Mstr.mem x denv.locals ->
      (* local variable *)
      let tyv = Mstr.find x denv.locals in
      DElocal x, tyv
  | _ ->
      ignore (userloc);
      assert false (*TODO*)

type local_var =
  | Lpvsymbol of pvsymbol
  | Lpasymbol of pasymbol
  | Lpsymbol  of psymbol * Denv.type_var Mtv.t * Denv.type_var Mreg.t

let region_table : region Htv.t =
  Htv.create 17 (* FIXME: use Wtv instead *)

let rec expr locals de = match de.dexpr_desc with
  | DElocal x ->
      assert (Mstr.mem x locals);
      begin match Mstr.find x locals with
      | Lpvsymbol pv -> e_value pv
      | Lpasymbol pa -> e_arrow pa
      | Lpsymbol  (_ps, _, _) ->
          (* let ity = ity_of_dty de.dexpr_dty in *)
          (* e_inst ps *)
          assert false (*TODO*)
      end
  | _ ->
      assert false (*TODO*)

174 175
(** Type declaration *)

176
type tys = ProgTS of itysymbol | PureTS of tysymbol
177 178 179 180 181 182 183 184 185

let find_tysymbol q uc =
  let loc = Typing.qloc q in
  let sl = Typing.string_list_of_qualid [] q in
  try ProgTS (ns_find_it (get_namespace uc) sl)
  with Not_found ->
  try PureTS (ns_find_ts (Theory.get_namespace (get_theory uc)) sl)
  with Not_found -> error ~loc (UnboundSymbol sl)

186 187 188
let look_for_loc tdl s =
  let look_id loc id = if id.id = s then Some id.id_loc else loc in
  let look_pj loc (id,_) = option_fold look_id loc id in
189 190 191
  let look_cs loc (csloc,id,pjl) =
    let loc = if id.id = s then Some csloc else loc in
    List.fold_left look_pj loc pjl in
192 193 194 195 196 197 198 199 200 201
  let look_fl loc f = look_id loc f.f_ident in
  let look loc d =
    let loc = look_id loc d.td_ident in
    match d.td_def with
      | TDabstract | TDalias _ -> loc
      | TDalgebraic csl -> List.fold_left look_cs loc csl
      | TDrecord fl -> List.fold_left look_fl loc fl
  in
  List.fold_left look None tdl

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
let add_types uc tdl =
  let add m d =
    let id = d.td_ident.id in
    Mstr.add_new (Loc.Located (d.td_loc, ClashSymbol id)) id d m in
  let def = List.fold_left add Mstr.empty tdl in

  (* detect cycles *)

  let rec cyc_visit x d seen = match Mstr.find_opt x seen with
    | Some true -> seen
    | Some false -> errorm ~loc:d.td_loc "Cyclic type definition"
    | None ->
        let ts_seen seen = function
          | Qident { id = x } ->
              begin try cyc_visit x (Mstr.find x def) seen
              with Not_found -> seen end
          | _ -> seen in
        let rec check seen = function
          | PPTtyvar _ -> seen
          | PPTtyapp (tyl,q) -> List.fold_left check (ts_seen seen q) tyl
          | PPTtuple tyl -> List.fold_left check seen tyl in
        let seen = match d.td_def with
          | TDabstract | TDalgebraic _ | TDrecord _ -> seen
          | TDalias ty -> check (Mstr.add x false seen) ty in
        Mstr.add x true seen in
  ignore (Mstr.fold cyc_visit def Mstr.empty);

  (* detect mutable types *)

  let mutables = Hashtbl.create 5 in
  let rec mut_visit x =
    try Hashtbl.find mutables x
    with Not_found ->
      let ts_mut = function
        | Qident { id = x } when Mstr.mem x def -> mut_visit x
        | q ->
            begin match find_tysymbol q uc with
              | ProgTS s -> s.its_regs <> []
              | PureTS _ -> false end in
      let rec check = function
        | PPTtyvar _ -> false
        | PPTtyapp (tyl,q) -> ts_mut q || List.exists check tyl
        | PPTtuple tyl -> List.exists check tyl in
      Hashtbl.replace mutables x false;
      let mut = match (Mstr.find x def).td_def with
        | TDabstract -> false
        | TDalias ty -> check ty
        | TDalgebraic csl ->
            let proj (_,pty) = check pty in
            List.exists (fun (_,_,l) -> List.exists proj l) csl
        | TDrecord fl ->
            let field f = f.f_mutable || check f.f_pty in
            List.exists field fl in
      Hashtbl.replace mutables x mut;
      mut
  in
  Mstr.iter (fun x _ -> ignore (mut_visit x)) def;

  (* create type symbols and predefinitions for mutable types *)

  let tysymbols = Hashtbl.create 5 in
  let predefs = Hashtbl.create 5 in
  let rec its_visit x =
    try match Hashtbl.find tysymbols x with
      | Some ts -> ts
      | None ->
          let loc = (Mstr.find x def).td_loc in
          errorm ~loc "Mutable type in a recursive type definition"
    with Not_found ->
      let d = Mstr.find x def in
      let add_tv acc id =
        let e = Loc.Located (id.id_loc, DuplicateTypeVar id.id) in
274
        let tv = create_tvsymbol (Denv.create_user_id id) in
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        Mstr.add_new e id.id tv acc in
      let vars = List.fold_left add_tv Mstr.empty d.td_params in
      let vl = List.map (fun id -> Mstr.find id.id vars) d.td_params in
      let id = Denv.create_user_id d.td_ident in
      let abst = d.td_vis = Abstract in
      let priv = d.td_vis = Private in
      Hashtbl.add tysymbols x None;
      let get_ts = function
        | Qident { id = x } when Mstr.mem x def -> ProgTS (its_visit x)
        | q -> find_tysymbol q uc
      in
      let rec parse = function
        | PPTtyvar { id = v ; id_loc = loc } ->
            let e = Loc.Located (loc, UnboundTypeVar v) in
            ity_var (Mstr.find_exn e v vars)
        | PPTtyapp (tyl,q) ->
            let tyl = List.map parse tyl in
            begin match get_ts q with
              | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
              | ProgTS ts -> Loc.try2 (Typing.qloc q) ity_app_fresh ts tyl
            end
        | PPTtuple tyl ->
297
            let ts = ts_tuple (List.length tyl) in
298 299 300 301 302 303 304
            ity_pur ts (List.map parse tyl)
      in
      let ts = match d.td_def with
        | TDalias ty ->
            let def = parse ty in
            let s = ity_topregions Sreg.empty def in
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) (Some def)
305
        | TDalgebraic csl when Hashtbl.find mutables x ->
306 307 308 309 310 311
            let projs = Hashtbl.create 5 in
            (* to check projections' types we must fix the tyvars *)
            let add s v = let t = ity_var v in ity_match s t t in
            let sbs = List.fold_left add ity_subst_empty vl in
            let mk_proj s (id,pty) =
              let ity = parse pty in
312
              let vtv = vty_value ity in
313 314
              match id with
                | None ->
315
                    let pv = create_pvsymbol (id_fresh "pj") vtv in
316 317 318 319
                    ity_topregions s ity, (pv, false)
                | Some id ->
                    try
                      let pv = Hashtbl.find projs id.id in
320
                      let ty = pv.pv_vtv.vtv_ity in
321 322
                      (* once we have ghost/mutable fields in algebraics,
                         don't forget to check here that they coincide, too *)
323
                      ignore (Loc.try3 id.id_loc ity_match sbs ty ity);
324 325
                      s, (pv, true)
                    with Not_found ->
326
                      let pv = create_pvsymbol (Denv.create_user_id id) vtv in
327 328 329 330 331 332 333 334
                      Hashtbl.replace projs id.id pv;
                      ity_topregions s ity, (pv, true)
            in
            let mk_constr s (_loc,cid,pjl) =
              let s,pjl = Util.map_fold_left mk_proj s pjl in
              s, (Denv.create_user_id cid, pjl)
            in
            let s,def = Util.map_fold_left mk_constr Sreg.empty csl in
335
            Hashtbl.replace predefs x def;
336
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
337
        | TDrecord fl when Hashtbl.find mutables x ->
338 339 340 341 342 343 344 345 346 347
            let mk_field s f =
              let ghost = f.f_ghost in
              let ity = parse f.f_pty in
              let fid = Denv.create_user_id f.f_ident in
              let s,mut = if f.f_mutable then
                let r = create_region fid ~ghost ity in
                Sreg.add r s, Some r
              else
                ity_topregions s ity, None
              in
348 349
              let vtv = vty_value ?mut ~ghost ity in
              s, (create_pvsymbol fid vtv, true)
350 351 352
            in
            let s,pjl = Util.map_fold_left mk_field Sreg.empty fl in
            let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
353
            Hashtbl.replace predefs x [Denv.create_user_id cid, pjl];
354 355 356 357 358 359 360 361 362 363 364
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
        | TDalgebraic _ | TDrecord _ | TDabstract ->
            create_itysymbol id ~abst ~priv vl [] None
      in
      Hashtbl.add tysymbols x (Some ts);
      ts
  in
  Mstr.iter (fun x _ -> ignore (its_visit x)) def;

  (* create predefinitions for immutable types *)

365
  let def_visit d (abstr,algeb,alias) =
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    let x = d.td_ident.id in
    let ts = Util.of_option (Hashtbl.find tysymbols x) in
    let add_tv s x v = Mstr.add x.id v s in
    let vars = List.fold_left2 add_tv Mstr.empty d.td_params ts.its_args in
    let get_ts = function
      | Qident { id = x } when Mstr.mem x def ->
          ProgTS (Util.of_option (Hashtbl.find tysymbols x))
      | q -> find_tysymbol q uc
    in
    let rec parse = function
      | PPTtyvar { id = v ; id_loc = loc } ->
          let e = Loc.Located (loc, UnboundTypeVar v) in
          ity_var (Mstr.find_exn e v vars)
      | PPTtyapp (tyl,q) ->
          let tyl = List.map parse tyl in
          begin match get_ts q with
            | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
            | ProgTS ts -> Loc.try3 (Typing.qloc q) ity_app ts tyl []
          end
      | PPTtuple tyl ->
386
          let ts = ts_tuple (List.length tyl) in
387 388 389
          ity_pur ts (List.map parse tyl)
    in
    match d.td_def with
390 391 392 393
      | TDabstract ->
          ts :: abstr, algeb, alias
      | TDalias _ ->
          abstr, algeb, ts :: alias
394
      | (TDalgebraic _ | TDrecord _) when Hashtbl.find mutables x ->
395
          abstr, (ts, Hashtbl.find predefs x) :: algeb, alias
396 397 398 399
      | TDalgebraic csl ->
          let projs = Hashtbl.create 5 in
          let mk_proj (id,pty) =
            let ity = parse pty in
400
            let vtv = vty_value ity in
401 402
            match id with
              | None ->
403
                  create_pvsymbol (id_fresh "pj") vtv, false
404 405 406
              | Some id ->
                  try
                    let pv = Hashtbl.find projs id.id in
407
                    let ty = pv.pv_vtv.vtv_ity in
408 409
                    (* once we have ghost/mutable fields in algebraics,
                       don't forget to check here that they coincide, too *)
410
                    Loc.try2 id.id_loc ity_equal_check ty ity;
411 412
                    pv, true
                  with Not_found ->
413
                    let pv = create_pvsymbol (Denv.create_user_id id) vtv in
414 415 416 417 418
                    Hashtbl.replace projs id.id pv;
                    pv, true
          in
          let mk_constr (_loc,cid,pjl) =
            Denv.create_user_id cid, List.map mk_proj pjl in
419
          abstr, (ts, List.map mk_constr csl) :: algeb, alias
420 421 422
      | TDrecord fl ->
          let mk_field f =
            let fid = Denv.create_user_id f.f_ident in
423 424
            let vtv = vty_value ~ghost:f.f_ghost (parse f.f_pty) in
            create_pvsymbol fid vtv, true in
425
          let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
426 427
          let csl = [Denv.create_user_id cid, List.map mk_field fl] in
          abstr, (ts, csl) :: algeb, alias
428
  in
429
  let abstr,algeb,alias = List.fold_right def_visit tdl ([],[],[]) in
430 431

  (* detect pure type declarations *)
432

433 434 435
  let kn = get_known uc in
  let check its = Mid.mem its.its_pure.ts_name kn in
  let check ity = ity_s_any check Util.ffalse ity in
436
  let is_impure_type ts =
437
    ts.its_abst || ts.its_priv || ts.its_regs <> [] ||
438
    option_apply false check ts.its_def
439
  in
440
  let check (pv,_) =
441
    let vtv = pv.pv_vtv in
442
    vtv.vtv_ghost || vtv.vtv_mut <> None || check vtv.vtv_ity in
443 444 445
  let is_impure_data (ts,csl) =
    is_impure_type ts ||
    List.exists (fun (_,l) -> List.exists check l) csl
446
  in
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  let mk_pure_decl (ts,csl) =
    let pjt = Hvs.create 3 in
    let ty = ty_app ts.its_pure (List.map ty_var ts.its_args) in
    let mk_proj (pv,f) =
      let vs = pv.pv_vs in
      if f then try vs.vs_ty, Some (Hvs.find pjt vs) with Not_found ->
        let pj = create_fsymbol (id_clone vs.vs_name) [ty] vs.vs_ty in
        Hvs.replace pjt vs pj;
        vs.vs_ty, Some pj
      else
        vs.vs_ty, None
    in
    let mk_constr (id,pjl) =
      let pjl = List.map mk_proj pjl in
      let cs = create_fsymbol id (List.map fst pjl) ty in
      cs, List.map snd pjl
    in
    ts.its_pure, List.map mk_constr csl
  in
  let add_type_decl uc ts =
    if is_impure_type ts then
      add_pdecl_with_tuples uc (create_ty_decl ts)
469
    else
470 471 472 473 474 475 476 477 478 479 480 481 482
      add_decl_with_tuples uc (Decl.create_ty_decl ts.its_pure)
  in
  try
    let uc = List.fold_left add_type_decl uc abstr in
    let uc = if algeb = [] then uc else
      if List.exists is_impure_data algeb then
        add_pdecl_with_tuples uc (create_data_decl algeb)
      else
        let d = List.map mk_pure_decl algeb in
        add_decl_with_tuples uc (Decl.create_data_decl d)
    in
    let uc = List.fold_left add_type_decl uc alias in
    uc
483
  with
484 485 486 487 488 489 490 491 492
    | ClashSymbol s ->
        error ?loc:(look_for_loc tdl s) (ClashSymbol s)
    | RecordFieldMissing ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (RecordFieldMissing (cs,ls))
    | DuplicateRecordField ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (DuplicateRecordField (cs,ls))
    | DuplicateVar { vs_name = { id_string = s }} ->
        errorm ?loc:(look_for_loc tdl s)
          "Field %s is used twice in the same constructor" s
493 494 495

(** Use/Clone of theories and modules *)

496 497 498 499
type mlw_contents = modul Mstr.t
type mlw_library = mlw_contents library
type mlw_file = mlw_contents * Theory.theory Mstr.t

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
let find_theory loc lib path s =
  (* search first in .mlw files (using lib) *)
  let thm =
    try Some (Env.read_lib_theory lib path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match thm, th with
    | Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
    | None, None -> Loc.error ~loc (Env.TheoryNotFound (path, s))
    | None, Some t | Some t, None -> t

let find_theory loc lib mt path s = match path with
  | [] -> (* local theory *)
      begin try Mstr.find s mt with Not_found -> find_theory loc lib [] s end
  | _ :: _ -> (* theory in file path *)
      find_theory loc lib path s

type theory_or_module = Theory of Theory.theory | Module of modul

526 527 528
let print_path fmt sl =
  Pp.print_list (Pp.constant_string ".") Format.pp_print_string fmt sl

529 530 531 532 533
let find_module loc lib path s =
  (* search first in .mlw files *)
  let m, thm =
    try
      let mm, mt = Env.read_lib_file lib path in
534
      Mstr.find_opt s mm, Mstr.find_opt s mt
535 536 537 538 539 540 541 542 543 544 545 546 547
    with
      | LibFileNotFound _ -> None, None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match m, thm, th with
    | Some _, None, _ -> assert false
    | _, Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
548 549
    | None, None, None ->
        Loc.errorm ~loc "Theory/module not found: %a" print_path (path @ [s])
550 551 552
    | Some m, Some _, None -> Module m
    | None, Some t, None | None, None, Some t -> Theory t

553
let find_module loc lib mm mt path s = match path with
554 555 556 557 558 559 560
  | [] -> (* local module/theory *)
      begin try Module (Mstr.find s mm)
        with Not_found -> begin try Theory (Mstr.find s mt)
          with Not_found -> find_module loc lib [] s end end
  | _ :: _ -> (* module/theory in file path *)
      find_module loc lib path s

561 562
(** Main loop *)

563
let add_theory lib path mt m =
564 565
  let { id = id; id_loc = loc } = m.pth_name in
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
566
  let uc = create_theory ~path (Denv.create_user_id m.pth_name) in
567
  let rec add_decl uc = function
568 569
    | Dlogic d ->
        Typing.add_decl uc d
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let th = find_theory loc lib mt path s in
        (* open namespace, if any *)
        let uc =
          if use.use_imp_exp <> None then Theory.open_namespace uc else uc in
        (* use or clone *)
        let uc = match inst with
          | None -> Theory.use_export uc th
          | Some inst ->
              let inst = Typing.type_inst uc th inst in
              Theory.clone_export uc th inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> Theory.close_namespace uc imp use.use_as
        end
588 589 590
    | Dnamespace (loc, name, import, dl) ->
        let uc = Theory.open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
591
        Loc.try3 loc Theory.close_namespace uc import name
592 593 594 595
    | Dlet _ | Dletrec _ | Dparam _ | Dexn _ | Duse _ ->
        assert false
  in
  let uc = List.fold_left add_decl uc m.pth_decl in
596
  let th = close_theory uc in
597 598 599 600 601 602 603 604
  Mstr.add id th mt

let add_module lib path mm mt m =
  let { id = id; id_loc = loc } = m.mod_name in
  if Mstr.mem id mm then Loc.errorm ~loc "clash with previous module %s" id;
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
  let uc = create_module ~path (Denv.create_user_id m.mod_name) in
  let rec add_decl uc = function
605 606 607 608
    | Dlogic (TypeDecl tdl) ->
        add_types uc tdl
    | Dlogic d ->
        add_to_theory Typing.add_decl uc d
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let mth = find_module loc lib mm mt path s in
        (* open namespace, if any *)
        let uc = if use.use_imp_exp <> None then open_namespace uc else uc in
        (* use or clone *)
        let uc = match mth, inst with
          | Theory th, None -> use_export_theory uc th
          | Theory th, Some inst ->
              let inst = Typing.type_inst (get_theory uc) th inst in
              clone_export_theory uc th inst
          | Module m, None -> use_export uc m
          | Module m, Some inst ->
              let inst = Typing.type_inst (get_theory uc) m.mod_theory inst in
              clone_export uc m inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> close_namespace uc imp use.use_as
        end
    | Dnamespace (loc, name, import, dl) ->
        let uc = open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
        Loc.try3 loc close_namespace uc import name
634 635 636 637 638 639 640 641
    | Dlet (_id, e) ->
        let e = dexpr ~userloc:None (create_denv uc) e in
        ignore (expr Mstr.empty e);
        uc
    | Dletrec _ | Dparam _ | Dexn _ ->
        assert false (* TODO *)
    | Duse _ ->
        assert false (*TO BE REMOVED EVENTUALLY *)
642 643 644 645
  in
  let uc = List.fold_left add_decl uc m.mod_decl in
  let m = close_module uc in
  Mstr.add id m mm, Mstr.add id m.mod_theory mt
646 647 648

let add_theory_module lib path (mm, mt) = function
  | Ptheory th -> mm, add_theory lib path mt th
649
  | Pmodule m -> add_module lib path mm mt m
650