blocking_semantics3.mlw 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

23
(** ident for mutable variables *)
24 25
type mident

26
(** ident for immutable variables *)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
type ident = {| ident_index : int |}

(** Terms *)
type term_node =
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term

with term = {| term_node : term_node;
               term_maxvar : int;
             |}

predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
  | {| term_node = Tvalue _ |} -> false
  | {| term_node = Tvar i |} -> x=i
  | {| term_node = Tderef _ |} -> false
  | {| term_node = Tbin t1 _ t2 |} -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
  end

predicate term_inv (t:term) =
  forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar

function mk_tvalue (v:value) : term =
   {| term_node = Tvalue v; term_maxvar = -1 |}

lemma mk_tvalue_inv :
   forall v:value. term_inv (mk_tvalue v)

function mk_tvar (i:ident) : term =
   {| term_node = Tvar i; term_maxvar = i.ident_index |}

lemma mk_tvar_inv :
   forall i:ident. term_inv (mk_tvar i)

function mk_tderef (r:mident) : term =
   {| term_node = Tderef r; term_maxvar = -1 |}

lemma mk_tderef_inv :
   forall r:mident. term_inv (mk_tderef r)

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
   {| term_node = Tbin t1 o t2;
      term_maxvar = max t1.term_maxvar t2.term_maxvar |}

lemma mk_tbin_inv :
   forall t1 t2:term, o:operator. term_inv t1 /\ term_inv t2 ->
     term_inv (mk_tbin t1 o t2)


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

87 88 89 90 91 92 93 94
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
95

96 97 98
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
      forall sigma: type_env, pi:type_stack, v:value, m:int.
	type_term sigma pi {| term_node = Tvalue v; term_maxvar = m |} (type_value v)
  | Type_var :
      forall sigma: type_env, pi:type_stack, v: ident, m:int, ty:datatype.
        (get_vartype v pi = ty) ->
        type_term sigma pi {| term_node = Tvar v ; term_maxvar = m |} ty
  | Type_deref :
      forall sigma: type_env, pi:type_stack, v: mident, m:int, ty:datatype.
        (get_reftype v sigma = ty) ->
        type_term sigma pi {| term_node = Tderef v; term_maxvar = m |} ty
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
        m:int, ty1 ty2 ty:datatype.
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
        type_term sigma pi {| term_node = Tbin t1 op t2; term_maxvar = m |} ty

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

181 182 183 184 185 186 187 188 189 190 191
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
192
	(get_reftype x sigma = ty) ->
193 194 195 196 197 198 199 200 201 202
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
203
	type_fmla sigma pi p ->
204 205 206
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
207
	type_fmla sigma pi inv ->
208 209 210
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
  | {| term_node = Tvalue v |} -> v
  | {| term_node = Tvar id |} -> get_stack id pi
  | {| term_node = Tderef id |} -> get_env id sigma
  | {| term_node = Tbin t1 op t2 |} ->
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

254 255 256 257 258 259 260 261 262

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b


263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tvar _ |} -> t
  | {| term_node = Tderef x |} -> if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tderef _ |} -> t
  | {| term_node = Tvar x |} ->
      if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
  id.ident_index > t.term_maxvar

lemma eval_msubst_term:
  forall sigma:env, pi:stack, e:term, x:mident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

lemma eval_subst_term:
  forall sigma:env, pi:stack, e:term, x:ident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (subst_term e x v) =
    eval_term sigma (Cons (x, (get_stack v pi)) pi) e

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

lemma let_subst:
    forall t:term, f:fmla, x id':ident, id :mident.
    msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id')

lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

lemma eval_subst:
  forall f:fmla, sigma:env, pi:stack, x:ident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (subst f x v) <->
     eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f)

lemma eval_swap:
  forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)

lemma eval_same_var:
  forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value.
    eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <->
    eval_fmla sigma (Cons (id,v1) pi) f

lemma eval_change_free :
  forall f:fmla, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
386
(** [valid_fmla f] is true when [f] is valid in any environment *)
387 388
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

atafat's avatar
atafat committed
389 390 391 392 393 394 395
axiom msubst_implies :
forall p q:fmla.
  valid_fmla (Fimplies p q) ->
  forall sigma:env, pi:stack, x:mident, id:ident.
    fresh_in_fmla id (Fand p q) -> 
    eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id)) 

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
(** let id' = t in f[id <- id'] <=> let id = t in f*)
lemma let_equiv :
  forall id:ident, id':ident, t:term, f:fmla.
    forall sigma:env, pi:stack.
      fresh_in_fmla id' f ->
	(eval_fmla sigma pi (Flet id' t (subst f id id'))
	 -> eval_fmla sigma pi (Flet id t f))

lemma let_equiv2 :
  forall id:ident, id':ident, t:term, f:fmla.
    forall sigma:env, pi:stack.
      fresh_in_fmla id' f ->
	eval_fmla sigma pi (Flet id' t (subst f id id'))
	 -> eval_fmla sigma pi (Flet id t f)

lemma let_implies :
  forall id:ident, t:term, p q:fmla.
    valid_fmla (Fimplies p q) ->
    valid_fmla (Fimplies (Flet id t p) (Flet id t q))

416 417 418 419 420 421 422 423
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
424 425 426 427 428
  end


(** small-steps semantics for expressions *)

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
444 445

  | one_step_if_true:
446 447 448
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
449 450

  | one_step_if_false:
451 452 453
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
454 455 456 457 458

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
459
          one_step sigma pi (Sassert f) sigma pi Sskip
460

461 462
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
463 464
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
465 466 467 468
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
469
  | one_step_while_false:
470 471 472 473 474
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
475 476 477

 (** many steps of execution *)

478
 inductive many_steps env stack stmt env stack stmt int =
479
   | many_steps_refl:
480
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
481
   | many_steps_trans:
482 483 484 485
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
486 487

  lemma steps_non_neg:
488 489
    forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
490 491

  lemma many_steps_seq:
492 493
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
494
      exists sigma2:env, pi2:stack, n1 n2:int.
495 496
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
497 498 499
        n = 1 + n1 + n2

 lemma one_step_change_free :
500 501 502 503
  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value.
    fresh_in_stmt id s ->
    one_step sigma (Cons (id,v) pi) s sigma' pi' s' ->
    one_step sigma pi s sigma' pi' s'
504 505 506 507 508 509



(** {3 Hoare triples} *)

(** partial correctness *)
510
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
511
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
512 513 514
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
515 516

(*** total correctness *)
517
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
518
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
519 520 521
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
550
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
551 552 553
      IdMap.get sigma' y = Vint 42

goal If42 :
554
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
555
      one_step my_sigma my_pi
556 557 558 559 560
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
561 562 563 564 565 566 567 568 569 570 571 572 573 574
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
575
  forall p p' q q':fmla, s:stmt.
576
  valid_fmla (Fimplies p' p) ->
577
  valid_triple p s q ->
578
  valid_fmla (Fimplies q q') ->
579
  valid_triple p' s q'
580

581 582
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
583 584

lemma assign_rule:
585 586 587
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
588 589

lemma seq_rule:
590 591 592
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
593 594

lemma if_rule:
595 596 597 598
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
599 600 601

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
602
  valid_triple p (Sassert f) p
603 604 605

lemma assert_rule_ext:
  forall f p:fmla.
606
  valid_triple (Fimplies f p) (Sassert f) p
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
658 659 660 661 662 663 664
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
665 666
  end

667
  function fresh_from (f:fmla) (s:stmt) : ident
668

669 670
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
671

672 673
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
674

675
  function abstract_effects (s:stmt) (f:fmla) : fmla
676

MARCHE Claude's avatar
MARCHE Claude committed
677 678 679 680 681
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
682 683
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
684 685
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
686

687 688 689 690
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
691
        (* asymmetric and *)
692 693 694 695 696 697 698 699 700
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
701 702
        Fand inv
          (abstract_effects body
703 704 705
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
706 707 708

    end

MARCHE Claude's avatar
MARCHE Claude committed
709 710 711 712 713 714
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


715 716
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
717
  (*   fresh_in_stmt id e -> *)
718 719 720
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
721
    forall s:stmt, p q:fmla.
722
      valid_fmla (Fimplies p q)
723
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
724 725 726 727 728 729

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
730 731

  lemma wp_reduction:
732 733
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
734
    forall q:fmla.
735 736
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
737 738

  lemma progress:
739 740 741
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
742
(* useful ?
743
      type_fmla sigmat pit q ->
744
*)
745 746 747 748
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
749 750 751 752 753 754 755 756 757

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)