blocking_semantics2_WP_wp_implies_1.v 29.4 KB
Newer Older
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import ZArith.
Require Import Rbase.
Require int.Int.

(* Why3 assumption *)
Definition implb(x:bool) (y:bool): bool := match (x,
  y) with
  | (true, false) => false
  | (_, _) => true
  end.

(* Why3 assumption *)
Inductive list (a:Type) :=
  | Nil : list a
  | Cons : a -> (list a) -> list a.
Set Contextual Implicit.
Implicit Arguments Nil.
Unset Contextual Implicit.
Implicit Arguments Cons.

Parameter map : forall (a:Type) (b:Type), Type.

Parameter get: forall (a:Type) (b:Type), (map a b) -> a -> b.
Implicit Arguments get.

Parameter set: forall (a:Type) (b:Type), (map a b) -> a -> b -> (map a b).
Implicit Arguments set.

Axiom Select_eq : forall (a:Type) (b:Type), forall (m:(map a b)),
  forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1)
  a2) = b1).

Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)),
  forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1)
  a2) = (get m a2)).

Parameter const: forall (a:Type) (b:Type), b -> (map a b).
Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.

Axiom Const : forall (a:Type) (b:Type), forall (b1:b) (a1:a),
  ((get (const b1:(map a b)) a1) = b1).

(* Why3 assumption *)
Inductive datatype  :=
  | TYunit : datatype 
  | TYint : datatype 
  | TYbool : datatype .

(* Why3 assumption *)
Inductive value  :=
  | Vvoid : value 
  | Vint : Z -> value 
  | Vbool : bool -> value .

(* Why3 assumption *)
Inductive operator  :=
  | Oplus : operator 
  | Ominus : operator 
  | Omult : operator 
  | Ole : operator .

Parameter mident : Type.

Parameter ident : Type.

Parameter result: ident.

(* Why3 assumption *)
Inductive term  :=
  | Tvalue : value -> term 
  | Tvar : ident -> term 
  | Tderef : mident -> term 
  | Tbin : term -> operator -> term -> term .

(* Why3 assumption *)
Inductive fmla  :=
  | Fterm : term -> fmla 
  | Fand : fmla -> fmla -> fmla 
  | Fnot : fmla -> fmla 
  | Fimplies : fmla -> fmla -> fmla 
  | Flet : ident -> term -> fmla -> fmla 
  | Fforall : ident -> datatype -> fmla -> fmla .

(* Why3 assumption *)
Inductive expr  :=
  | Evalue : value -> expr 
  | Ebin : expr -> operator -> expr -> expr 
  | Evar : ident -> expr 
  | Ederef : mident -> expr 
  | Eassign : mident -> expr -> expr 
  | Eseq : expr -> expr -> expr 
  | Elet : ident -> expr -> expr -> expr 
  | Eif : expr -> expr -> expr -> expr 
  | Eassert : fmla -> expr 
  | Ewhile : expr -> fmla -> expr -> expr .

(* Why3 assumption *)
Definition type_value(v:value): datatype :=
  match v with
  | Vvoid => TYunit
  | (Vint int1) => TYint
  | (Vbool bool1) => TYbool
  end.

(* Why3 assumption *)
Inductive type_operator : operator -> datatype -> datatype
  -> datatype -> Prop :=
  | Type_plus : (type_operator Oplus TYint TYint TYint)
  | Type_minus : (type_operator Ominus TYint TYint TYint)
  | Type_mult : (type_operator Omult TYint TYint TYint)
  | Type_le : (type_operator Ole TYint TYint TYbool).

(* Why3 assumption *)
Definition type_stack  := (list (ident* datatype)%type).

Parameter get_vartype: ident -> (list (ident* datatype)%type) -> datatype.

Axiom get_vartype_def : forall (i:ident) (pi:(list (ident* datatype)%type)),
  match pi with
  | Nil => ((get_vartype i pi) = TYunit)
  | (Cons (x, ty) r) => ((x = i) -> ((get_vartype i pi) = ty)) /\
      ((~ (x = i)) -> ((get_vartype i pi) = (get_vartype i r)))
  end.

(* Why3 assumption *)
Definition type_env  := (map mident datatype).

(* Why3 assumption *)
Inductive type_term : (map mident datatype) -> (list (ident* datatype)%type)
  -> term -> datatype -> Prop :=
  | Type_value : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:value), (type_term sigma pi (Tvalue v)
      (type_value v))
  | Type_var : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:ident) (ty:datatype), ((get_vartype v pi) = ty) ->
      (type_term sigma pi (Tvar v) ty)
  | Type_deref : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:mident) (ty:datatype), ((get sigma v) = ty) ->
      (type_term sigma pi (Tderef v) ty)
  | Type_bin : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (t1:term) (t2:term) (op:operator) (ty1:datatype)
      (ty2:datatype) (ty:datatype), (type_term sigma pi t1 ty1) ->
      ((type_term sigma pi t2 ty2) -> ((type_operator op ty1 ty2 ty) ->
      (type_term sigma pi (Tbin t1 op t2) ty))).

(* Why3 assumption *)
Inductive type_fmla : (map mident datatype) -> (list (ident* datatype)%type)
  -> fmla -> Prop :=
  | Type_term : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (t:term), (type_term sigma pi t TYbool) ->
      (type_fmla sigma pi (Fterm t))
  | Type_conj : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (f1:fmla) (f2:fmla), (type_fmla sigma pi f1) ->
      ((type_fmla sigma pi f2) -> (type_fmla sigma pi (Fand f1 f2)))
  | Type_neg : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (f:fmla), (type_fmla sigma pi f) -> (type_fmla sigma
      pi (Fnot f))
  | Type_implies : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (f1:fmla) (f2:fmla), (type_fmla sigma pi f1) ->
      ((type_fmla sigma pi f2) -> (type_fmla sigma pi (Fimplies f1 f2)))
  | Type_let : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (t:term) (f:fmla) (ty:datatype),
      (type_term sigma pi t ty) -> ((type_fmla sigma (Cons (x, ty) pi) f) ->
      (type_fmla sigma pi (Flet x t f)))
  | Type_forall1 : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYint)
      pi) f) -> (type_fmla sigma pi (Fforall x TYint f))
  | Type_forall2 : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYbool)
      pi) f) -> (type_fmla sigma pi (Fforall x TYbool f))
  | Type_forall3 : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYunit)
      pi) f) -> (type_fmla sigma pi (Fforall x TYunit f)).

(* Why3 assumption *)
Inductive type_expr : (map mident datatype) -> (list (ident* datatype)%type)
  -> expr -> datatype -> Prop :=
  | Type_evalue : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:value), (type_expr sigma pi (Evalue v)
      (type_value v))
  | Type_evar : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:ident) (ty:datatype), ((get_vartype v pi) = ty) ->
      (type_expr sigma pi (Evar v) ty)
  | Type_ederef : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:mident) (ty:datatype), ((get sigma v) = ty) ->
      (type_expr sigma pi (Ederef v) ty)
  | Type_ebin : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (e1:expr) (e2:expr) (op:operator) (ty1:datatype)
      (ty2:datatype) (ty:datatype), (type_expr sigma pi e1 ty1) ->
      ((type_expr sigma pi e2 ty2) -> ((type_operator op ty1 ty2 ty) ->
      (type_expr sigma pi (Ebin e1 op e2) ty)))
  | Type_eseq : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (e1:expr) (e2:expr) (ty:datatype), (type_expr sigma pi
      e1 TYunit) -> ((type_expr sigma pi e2 ty) -> (type_expr sigma pi
      (Eseq e1 e2) ty))
  | Type_eassigns : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:mident) (e:expr) (ty:datatype), ((get sigma
      x) = ty) -> ((type_expr sigma pi e ty) -> (type_expr sigma pi
      (Eassign x e) TYunit))
  | Type_elet : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (e1:expr) (e2:expr) (ty1:datatype)
      (ty2:datatype), (type_expr sigma pi e1 ty1) -> ((type_expr sigma
      (Cons (x, ty2) pi) e2 ty2) -> (type_expr sigma pi (Elet x e1 e2) ty2))
  | Type_eif : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (e1:expr) (e2:expr) (e3:expr) (ty:datatype),
      (type_expr sigma pi e1 TYbool) -> ((type_expr sigma pi e2 ty) ->
      ((type_expr sigma pi e3 ty) -> (type_expr sigma pi (Eif e1 e2 e3) ty)))
  | Type_eassert : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (p:fmla), (type_fmla sigma pi p) -> (type_expr sigma
      pi (Eassert p) TYbool)
  | Type_ewhile : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (guard:expr) (body:expr) (inv:fmla), (type_fmla sigma
      pi inv) -> ((type_expr sigma pi guard TYbool) -> ((type_expr sigma pi
      body TYunit) -> (type_expr sigma pi (Ewhile guard inv body) TYunit))).

(* Why3 assumption *)
Definition env  := (map mident value).

(* Why3 assumption *)
Definition stack  := (list (ident* value)%type).

Parameter get_stack: ident -> (list (ident* value)%type) -> value.

Axiom get_stack_def : forall (i:ident) (pi:(list (ident* value)%type)),
  match pi with
  | Nil => ((get_stack i pi) = Vvoid)
  | (Cons (x, v) r) => ((x = i) -> ((get_stack i pi) = v)) /\ ((~ (x = i)) ->
      ((get_stack i pi) = (get_stack i r)))
  end.

Axiom get_stack_eq : forall (x:ident) (v:value) (r:(list (ident*
  value)%type)), ((get_stack x (Cons (x, v) r)) = v).

Axiom get_stack_neq : forall (x:ident) (i:ident) (v:value) (r:(list (ident*
  value)%type)), (~ (x = i)) -> ((get_stack i (Cons (x, v) r)) = (get_stack i
  r)).

Parameter eval_bin: value -> operator -> value -> value.

Axiom eval_bin_def : forall (x:value) (op:operator) (y:value), match (x,
  y) with
  | ((Vint x1), (Vint y1)) =>
      match op with
      | Oplus => ((eval_bin x op y) = (Vint (x1 + y1)%Z))
      | Ominus => ((eval_bin x op y) = (Vint (x1 - y1)%Z))
      | Omult => ((eval_bin x op y) = (Vint (x1 * y1)%Z))
      | Ole => ((x1 <= y1)%Z -> ((eval_bin x op y) = (Vbool true))) /\
          ((~ (x1 <= y1)%Z) -> ((eval_bin x op y) = (Vbool false)))
      end
  | (_, _) => ((eval_bin x op y) = Vvoid)
  end.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint eval_term(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (t:term) {struct t}: value :=
  match t with
  | (Tvalue v) => v
  | (Tvar id) => (get_stack id pi)
  | (Tderef id) => (get sigma id)
  | (Tbin t1 op t2) => (eval_bin (eval_term sigma pi t1) op (eval_term sigma
      pi t2))
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint eval_fmla(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm t) => ((eval_term sigma pi t) = (Vbool true))
  | (Fand f1 f2) => (eval_fmla sigma pi f1) /\ (eval_fmla sigma pi f2)
  | (Fnot f1) => ~ (eval_fmla sigma pi f1)
  | (Fimplies f1 f2) => (eval_fmla sigma pi f1) -> (eval_fmla sigma pi f2)
  | (Flet x t f1) => (eval_fmla sigma (Cons (x, (eval_term sigma pi t)) pi)
      f1)
  | (Fforall x TYint f1) => forall (n:Z), (eval_fmla sigma (Cons (x,
      (Vint n)) pi) f1)
  | (Fforall x TYbool f1) => forall (b:bool), (eval_fmla sigma (Cons (x,
      (Vbool b)) pi) f1)
  | (Fforall x TYunit f1) => (eval_fmla sigma (Cons (x, Vvoid) pi) f1)
  end.
Unset Implicit Arguments.

Parameter msubst_term: term -> mident -> ident -> term.

Axiom msubst_term_def : forall (e:term) (r:mident) (v:ident),
  match e with
  | ((Tvalue _)|(Tvar _)) => ((msubst_term e r v) = e)
  | (Tderef x) => ((r = x) -> ((msubst_term e r v) = (Tvar v))) /\
      ((~ (r = x)) -> ((msubst_term e r v) = e))
  | (Tbin e1 op e2) => ((msubst_term e r v) = (Tbin (msubst_term e1 r v) op
      (msubst_term e2 r v)))
  end.

Parameter subst_term: term -> ident -> ident -> term.

Axiom subst_term_def : forall (e:term) (r:ident) (v:ident),
  match e with
  | ((Tvalue _)|(Tderef _)) => ((subst_term e r v) = e)
  | (Tvar x) => ((r = x) -> ((subst_term e r v) = (Tvar v))) /\
      ((~ (r = x)) -> ((subst_term e r v) = e))
  | (Tbin e1 op e2) => ((subst_term e r v) = (Tbin (subst_term e1 r v) op
      (subst_term e2 r v)))
  end.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint fresh_in_term(id:ident) (t:term) {struct t}: Prop :=
  match t with
  | (Tvalue _) => True
  | (Tvar v) => ~ (id = v)
  | (Tderef _) => True
  | (Tbin t1 _ t2) => (fresh_in_term id t1) /\ (fresh_in_term id t2)
  end.
Unset Implicit Arguments.

Axiom eval_msubst_term : forall (sigma:(map mident value)) (pi:(list (ident*
  value)%type)) (e:term) (x:mident) (v:ident), (fresh_in_term v e) ->
  ((eval_term sigma pi (msubst_term e x v)) = (eval_term (set sigma x
  (get_stack v pi)) pi e)).

Axiom eval_subst_term : forall (sigma:(map mident value)) (pi:(list (ident*
  value)%type)) (e:term) (x:ident) (v:ident), (fresh_in_term v e) ->
  ((eval_term sigma pi (subst_term e x v)) = (eval_term sigma (Cons (x,
  (get_stack v pi)) pi) e)).

Axiom eval_term_change_free : forall (t:term) (sigma:(map mident value))
  (pi:(list (ident* value)%type)) (id:ident) (v:value), (fresh_in_term id
  t) -> ((eval_term sigma (Cons (id, v) pi) t) = (eval_term sigma pi t)).

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint fresh_in_fmla(id:ident) (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm e) => (fresh_in_term id e)
  | ((Fand f1 f2)|(Fimplies f1 f2)) => (fresh_in_fmla id f1) /\
      (fresh_in_fmla id f2)
  | (Fnot f1) => (fresh_in_fmla id f1)
  | (Flet y t f1) => (~ (id = y)) /\ ((fresh_in_term id t) /\
      (fresh_in_fmla id f1))
  | (Fforall y ty f1) => (~ (id = y)) /\ (fresh_in_fmla id f1)
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint subst(f:fmla) (x:ident) (v:ident) {struct f}: fmla :=
  match f with
  | (Fterm e) => (Fterm (subst_term e x v))
  | (Fand f1 f2) => (Fand (subst f1 x v) (subst f2 x v))
  | (Fnot f1) => (Fnot (subst f1 x v))
  | (Fimplies f1 f2) => (Fimplies (subst f1 x v) (subst f2 x v))
  | (Flet y t f1) => (Flet y (subst_term t x v) (subst f1 x v))
  | (Fforall y ty f1) => (Fforall y ty (subst f1 x v))
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint msubst(f:fmla) (x:mident) (v:ident) {struct f}: fmla :=
  match f with
  | (Fterm e) => (Fterm (msubst_term e x v))
  | (Fand f1 f2) => (Fand (msubst f1 x v) (msubst f2 x v))
  | (Fnot f1) => (Fnot (msubst f1 x v))
  | (Fimplies f1 f2) => (Fimplies (msubst f1 x v) (msubst f2 x v))
  | (Flet y t f1) => (Flet y (msubst_term t x v) (msubst f1 x v))
  | (Fforall y ty f1) => (Fforall y ty (msubst f1 x v))
  end.
Unset Implicit Arguments.

Axiom subst_fresh : forall (f:fmla) (x:ident) (v:ident), (fresh_in_fmla x
  f) -> ((subst f x v) = f).

Axiom let_subst : forall (t:term) (f:fmla) (x:ident) (id':ident) (id:mident),
  ((msubst (Flet x t f) id id') = (Flet x (msubst_term t id id') (msubst f id
  id'))).

Axiom eval_subst : forall (f:fmla) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (x:mident) (v:ident), (fresh_in_fmla v f) ->
  ((eval_fmla sigma pi (msubst f x v)) <-> (eval_fmla (set sigma x
  (get_stack v pi)) pi f)).

Axiom eval_swap : forall (f:fmla) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (id1:ident) (id2:ident) (v1:value) (v2:value),
  (~ (id1 = id2)) -> ((eval_fmla sigma (Cons (id1, v1) (Cons (id2, v2) pi))
  f) <-> (eval_fmla sigma (Cons (id2, v2) (Cons (id1, v1) pi)) f)).

Axiom eval_change_free : forall (f:fmla) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (id:ident) (v:value), (fresh_in_fmla id f) ->
  ((eval_fmla sigma (Cons (id, v) pi) f) <-> (eval_fmla sigma pi f)).

(* Why3 assumption *)
Definition valid_fmla(p:fmla): Prop := forall (sigma:(map mident value))
  (pi:(list (ident* value)%type)), (eval_fmla sigma pi p).

Axiom let_equiv : forall (id:ident) (id':ident) (t:term) (f:fmla),
  forall (sigma:(map mident value)) (pi:(list (ident* value)%type)),
  (eval_fmla sigma pi (Flet id' t (subst f id id'))) -> (eval_fmla sigma pi
  (Flet id t f)).

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint fresh_in_expr(id:ident) (e:expr) {struct e}: Prop :=
  match e with
  | (Evalue _) => True
  | ((Eseq e1 e2)|(Ebin e1 _ e2)) => (fresh_in_expr id e1) /\
      (fresh_in_expr id e2)
  | (Evar v) => ~ (id = v)
  | (Ederef _) => True
  | (Eassign _ e1) => (fresh_in_expr id e1)
  | (Elet v e1 e2) => (~ (id = v)) /\ ((fresh_in_expr id e1) /\
      (fresh_in_expr id e2))
  | (Eif e1 e2 e3) => (fresh_in_expr id e1) /\ ((fresh_in_expr id e2) /\
      (fresh_in_expr id e3))
  | (Eassert f) => (fresh_in_fmla id f)
  | (Ewhile cond inv body) => (fresh_in_expr id cond) /\ ((fresh_in_fmla id
      inv) /\ (fresh_in_expr id body))
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Inductive one_step : (map mident value) -> (list (ident* value)%type) -> expr
  -> (map mident value) -> (list (ident* value)%type) -> expr -> Prop :=
  | one_step_var : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (v:ident), (one_step sigma pi (Evar v) sigma pi
      (Evalue (get_stack v pi)))
  | one_step_deref : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (v:mident), (one_step sigma pi (Ederef v) sigma pi
      (Evalue (get sigma v)))
  | one_step_bin_ctxt1 : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (op:operator) (e1:expr) (e1':expr) (e2:expr),
      (one_step sigma pi e1 sigma' pi' e1') -> (one_step sigma pi (Ebin e1 op
      e2) sigma' pi' (Ebin e1' op e2))
  | one_step_bin_ctxt2 : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (op:operator) (v1:value) (e2:expr) (e2':expr),
      (one_step sigma pi e2 sigma' pi' e2') -> (one_step sigma pi
      (Ebin (Evalue v1) op e2) sigma' pi' (Ebin (Evalue v1) op e2'))
  | one_step_bin_value : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (op:operator) (v1:value) (v2:value), (one_step sigma pi
      (Ebin (Evalue v1) op (Evalue v2)) sigma' pi' (Evalue (eval_bin v1 op
      v2)))
  | one_step_assign_ctxt : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (x:mident) (e:expr) (e':expr), (one_step sigma pi e
      sigma' pi' e') -> (one_step sigma pi (Eassign x e) sigma' pi'
      (Eassign x e'))
  | one_step_assign_value : forall (sigma:(map mident value)) (pi:(list
      (ident* value)%type)) (x:mident) (v:value), (one_step sigma pi
      (Eassign x (Evalue v)) (set sigma x v) pi (Evalue Vvoid))
  | one_step_seq_ctxt : forall (sigma:(map mident value)) (sigma':(map mident
      value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (e1:expr) (e1':expr) (e2:expr), (one_step sigma pi e1
      sigma' pi' e1') -> (one_step sigma pi (Eseq e1 e2) sigma' pi' (Eseq e1'
      e2))
  | one_step_seq_value : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (e:expr), (one_step sigma pi (Eseq (Evalue Vvoid) e)
      sigma pi e)
  | one_step_let_ctxt : forall (sigma:(map mident value)) (sigma':(map mident
      value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (id:ident) (e1:expr) (e1':expr) (e2:expr),
      (one_step sigma pi e1 sigma' pi' e1') -> (one_step sigma pi (Elet id e1
      e2) sigma' pi' (Elet id e1' e2))
  | one_step_let_value : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (id:ident) (v:value) (e:expr), (one_step sigma pi
      (Elet id (Evalue v) e) sigma (Cons (id, v) pi) e)
  | one_step_if_ctxt : forall (sigma:(map mident value)) (sigma':(map mident
      value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (e1:expr) (e1':expr) (e2:expr) (e3:expr), (one_step sigma
      pi e1 sigma' pi' e1') -> (one_step sigma pi (Eif e1 e2 e3) sigma' pi'
      (Eif e1' e2 e3))
  | one_step_if_true : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (e1:expr) (e2:expr), (one_step sigma pi
      (Eif (Evalue (Vbool true)) e1 e2) sigma pi e1)
  | one_step_if_false : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (e1:expr) (e2:expr), (one_step sigma pi
      (Eif (Evalue (Vbool false)) e1 e2) sigma pi e2)
  | one_step_assert : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (f:fmla), (eval_fmla sigma pi f) -> (one_step sigma pi
      (Eassert f) sigma pi (Evalue Vvoid))
  | one_step_while : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (cond:expr) (inv:fmla) (body:expr), (eval_fmla sigma pi
      inv) -> (one_step sigma pi (Ewhile cond inv body) sigma pi (Eif cond
      (Eseq body (Ewhile cond inv body)) (Evalue Vvoid))).

(* Why3 assumption *)
Inductive many_steps : (map mident value) -> (list (ident* value)%type)
  -> expr -> (map mident value) -> (list (ident* value)%type) -> expr
  -> Z -> Prop :=
  | many_steps_refl : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (e:expr), (many_steps sigma pi e sigma pi e 0%Z)
  | many_steps_trans : forall (sigma1:(map mident value)) (sigma2:(map mident
      value)) (sigma3:(map mident value)) (pi1:(list (ident* value)%type))
      (pi2:(list (ident* value)%type)) (pi3:(list (ident* value)%type))
      (e1:expr) (e2:expr) (e3:expr) (n:Z), (one_step sigma1 pi1 e1 sigma2 pi2
      e2) -> ((many_steps sigma2 pi2 e2 sigma3 pi3 e3 n) ->
      (many_steps sigma1 pi1 e1 sigma3 pi3 e3 (n + 1%Z)%Z)).

Axiom steps_non_neg : forall (sigma1:(map mident value)) (sigma2:(map mident
  value)) (pi1:(list (ident* value)%type)) (pi2:(list (ident* value)%type))
  (e1:expr) (e2:expr) (n:Z), (many_steps sigma1 pi1 e1 sigma2 pi2 e2 n) ->
  (0%Z <= n)%Z.

Axiom many_steps_seq : forall (sigma1:(map mident value)) (sigma3:(map mident
  value)) (pi1:(list (ident* value)%type)) (pi3:(list (ident* value)%type))
  (e1:expr) (e2:expr) (n:Z), (many_steps sigma1 pi1 (Eseq e1 e2) sigma3 pi3
  (Evalue Vvoid) n) -> exists sigma2:(map mident value), exists pi2:(list
  (ident* value)%type), exists n1:Z, exists n2:Z, (many_steps sigma1 pi1 e1
  sigma2 pi2 (Evalue Vvoid) n1) /\ ((many_steps sigma2 pi2 e2 sigma3 pi3
  (Evalue Vvoid) n2) /\ (n = ((1%Z + n1)%Z + n2)%Z)).

Axiom many_steps_let : forall (sigma1:(map mident value)) (sigma3:(map mident
  value)) (pi1:(list (ident* value)%type)) (pi3:(list (ident* value)%type))
  (id:ident) (e1:expr) (e2:expr) (v2:value) (n:Z), (many_steps sigma1 pi1
  (Elet id e1 e2) sigma3 pi3 (Evalue v2) n) -> exists sigma2:(map mident
  value), exists pi2:(list (ident* value)%type), exists v1:value,
  exists n1:Z, exists n2:Z, (many_steps sigma1 pi1 e1 sigma2 pi2 (Evalue v1)
  n1) /\ ((many_steps sigma2 (Cons (id, v1) pi2) e2 sigma3 pi3 (Evalue v2)
  n2) /\ (n = ((1%Z + n1)%Z + n2)%Z)).

Axiom one_step_change_free : forall (e:expr) (e':expr) (sigma:(map mident
  value)) (sigma':(map mident value)) (pi:(list (ident* value)%type))
  (pi':(list (ident* value)%type)) (id:ident) (v:value), (fresh_in_expr id
  e) -> ((one_step sigma (Cons (id, v) pi) e sigma' pi' e') ->
  (one_step sigma pi e sigma' pi' e')).

(* Why3 assumption *)
Definition valid_triple(p:fmla) (e:expr) (q:fmla): Prop := forall (sigma:(map
  mident value)) (pi:(list (ident* value)%type)), (eval_fmla sigma pi p) ->
  forall (sigma':(map mident value)) (pi':(list (ident* value)%type))
  (v:value) (n:Z), (many_steps sigma pi e sigma' pi' (Evalue v) n) ->
  (eval_fmla sigma' (Cons (result, v) pi') q).

(* Why3 assumption *)
Definition total_valid_triple(p:fmla) (e:expr) (q:fmla): Prop :=
  forall (sigma:(map mident value)) (pi:(list (ident* value)%type)),
  (eval_fmla sigma pi p) -> exists sigma':(map mident value),
  exists pi':(list (ident* value)%type), exists v:value, exists n:Z,
  (many_steps sigma pi e sigma' pi' (Evalue v) n) /\ (eval_fmla sigma'
  (Cons (result, v) pi') q).

Parameter set1 : forall (a:Type), Type.

Parameter mem: forall (a:Type), a -> (set1 a) -> Prop.
Implicit Arguments mem.

(* Why3 assumption *)
Definition infix_eqeq (a:Type)(s1:(set1 a)) (s2:(set1 a)): Prop :=
  forall (x:a), (mem x s1) <-> (mem x s2).
Implicit Arguments infix_eqeq.

Axiom extensionality : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)),
  (infix_eqeq s1 s2) -> (s1 = s2).

(* Why3 assumption *)
Definition subset (a:Type)(s1:(set1 a)) (s2:(set1 a)): Prop := forall (x:a),
  (mem x s1) -> (mem x s2).
Implicit Arguments subset.

Axiom subset_trans : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a))
  (s3:(set1 a)), (subset s1 s2) -> ((subset s2 s3) -> (subset s1 s3)).

Parameter empty: forall (a:Type), (set1 a).
Set Contextual Implicit.
Implicit Arguments empty.
Unset Contextual Implicit.

(* Why3 assumption *)
Definition is_empty (a:Type)(s:(set1 a)): Prop := forall (x:a), ~ (mem x s).
Implicit Arguments is_empty.

Axiom empty_def1 : forall (a:Type), (is_empty (empty :(set1 a))).

Parameter add: forall (a:Type), a -> (set1 a) -> (set1 a).
Implicit Arguments add.

Axiom add_def1 : forall (a:Type), forall (x:a) (y:a), forall (s:(set1 a)),
  (mem x (add y s)) <-> ((x = y) \/ (mem x s)).

Parameter remove: forall (a:Type), a -> (set1 a) -> (set1 a).
Implicit Arguments remove.

Axiom remove_def1 : forall (a:Type), forall (x:a) (y:a) (s:(set1 a)), (mem x
  (remove y s)) <-> ((~ (x = y)) /\ (mem x s)).

Axiom subset_remove : forall (a:Type), forall (x:a) (s:(set1 a)),
  (subset (remove x s) s).

Parameter union: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments union.

Axiom union_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (union s1 s2)) <-> ((mem x s1) \/ (mem x s2)).

Parameter inter: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments inter.

Axiom inter_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (inter s1 s2)) <-> ((mem x s1) /\ (mem x s2)).

Parameter diff: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments diff.

Axiom diff_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (diff s1 s2)) <-> ((mem x s1) /\ ~ (mem x s2)).

Axiom subset_diff : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)),
  (subset (diff s1 s2) s1).

Parameter choose: forall (a:Type), (set1 a) -> a.
Implicit Arguments choose.

Axiom choose_def : forall (a:Type), forall (s:(set1 a)), (~ (is_empty s)) ->
  (mem (choose s) s).

Parameter all: forall (a:Type), (set1 a).
Set Contextual Implicit.
Implicit Arguments all.
Unset Contextual Implicit.

Axiom all_def : forall (a:Type), forall (x:a), (mem x (all :(set1 a))).

(* Why3 assumption *)
Definition assigns(sigma:(map mident value)) (a:(set1 mident)) (sigma':(map
  mident value)): Prop := forall (i:mident), (~ (mem i a)) -> ((get sigma
  i) = (get sigma' i)).

Axiom assigns_refl : forall (sigma:(map mident value)) (a:(set1 mident)),
  (assigns sigma a sigma).

Axiom assigns_trans : forall (sigma1:(map mident value)) (sigma2:(map mident
  value)) (sigma3:(map mident value)) (a:(set1 mident)), ((assigns sigma1 a
  sigma2) /\ (assigns sigma2 a sigma3)) -> (assigns sigma1 a sigma3).

Axiom assigns_union_left : forall (sigma:(map mident value)) (sigma':(map
  mident value)) (s1:(set1 mident)) (s2:(set1 mident)), (assigns sigma s1
  sigma') -> (assigns sigma (union s1 s2) sigma').

Axiom assigns_union_right : forall (sigma:(map mident value)) (sigma':(map
  mident value)) (s1:(set1 mident)) (s2:(set1 mident)), (assigns sigma s2
  sigma') -> (assigns sigma (union s1 s2) sigma').

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint expr_writes(e:expr) (w:(set1 mident)) {struct e}: Prop :=
  match e with
  | ((Evalue _)|((Evar _)|((Ederef _)|(Eassert _)))) => True
  | (Ebin e1 _ e2) => (expr_writes e1 w) /\ (expr_writes e2 w)
  | (Eassign id _) => (mem id w)
  | (Eseq e1 e2) => (expr_writes e1 w) /\ (expr_writes e2 w)
  | (Elet id e1 e2) => (expr_writes e1 w) /\ (expr_writes e2 w)
  | (Eif e1 e2 e3) => (expr_writes e1 w) /\ ((expr_writes e2 w) /\
      (expr_writes e3 w))
  | (Ewhile cond _ body) => (expr_writes cond w) /\ (expr_writes body w)
  end.
Unset Implicit Arguments.

Parameter fresh_from: fmla -> expr -> ident.

Axiom fresh_from_fmla : forall (e:expr) (f:fmla),
  (fresh_in_fmla (fresh_from f e) f).

Axiom fresh_from_expr : forall (e:expr) (f:fmla),
  (fresh_in_expr (fresh_from f e) e).

Parameter abstract_effects: expr -> fmla -> fmla.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint wp(e:expr) (q:fmla) {struct e}: fmla :=
  match e with
  | (Evalue v) => (Flet result (Tvalue v) q)
  | (Evar v) => (Flet result (Tvar v) q)
  | (Ederef x) => (Flet result (Tderef x) q)
  | (Eassert f) => (Fand f (Fimplies f q))
  | (Eseq e1 e2) => (wp e1 (wp e2 q))
  | (Elet id e1 e2) => (wp e1 (Flet id (Tvar result) (wp e2 q)))
  | (Ebin e1 op e2) => let t1 := (fresh_from q e) in let t2 :=
      (fresh_from (Fand (Fterm (Tvar t1)) q) e) in let q' := (Flet result
      (Tbin (Tvar t1) op (Tvar t2)) q) in let f := (wp e2 (Flet t2
      (Tvar result) q')) in (wp e1 (Flet t1 (Tvar result) f))
  | (Eassign x e1) => let id := (fresh_from q e1) in let q' := (Flet result
      (Tvalue Vvoid) q) in (wp e1 (Flet id (Tvar result) (msubst q' x id)))
  | (Eif e1 e2 e3) => let f := (Fand (Fimplies (Fterm (Tvar result)) (wp e2
      q)) (Fimplies (Fnot (Fterm (Tvar result))) (wp e3 q))) in (wp e1 f)
  | (Ewhile cond inv body) => (Fand inv (abstract_effects body (wp cond
      (Fand (Fimplies (Fand (Fterm (Tvar result)) inv) (wp body inv))
      (Fimplies (Fand (Fnot (Fterm (Tvar result))) inv) q)))))
  end.
Unset Implicit Arguments.

(* Why3 goal *)
Theorem wp_implies : forall (p:fmla) (q:fmla), (forall (sigma:(map mident
  value)) (pi:(list (ident* value)%type)), (eval_fmla sigma pi p) ->
  (eval_fmla sigma pi q)) -> forall (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (e:expr), (eval_fmla sigma pi (wp e p)) ->
  (eval_fmla sigma pi (wp e q)).
intros p q h sigma pi e h1.

Qed.