wp2.mlw 11.7 KB
Newer Older
MARCHE Claude's avatar
MARCHE Claude committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


theory Imp

(* terms and formulas *)

type datatype = Tint | Tbool

type operator = Oplus | Ominus | Omult | Ole

type ident = int

type term =
  | Tconst int
  | Tvar ident
  | Tderef ident
  | Tbin term operator term

type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla
  | Fforall ident datatype fmla

use import int.Int
use import bool.Bool

type value =
  | Vint int
  | Vbool bool

use map.Map as IdMap
type env = IdMap.map ident value

(* semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vbool False
  end

function get_env (i:ident) (e:env) : value = IdMap.get e i

function eval_term (sigma:env) (pi:env) (t:term) : value =
  match t with
  | Tconst n -> Vint n
  | Tvar id -> get_env id pi
  | Tderef id -> get_env id sigma
  | Tbin t1 op t2 ->
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

function my_sigma : env = IdMap.const (Vint 42)
function my_pi : env = IdMap.const (Vint 0)

goal Test13 :
  eval_term my_sigma my_pi (Tconst 13) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (Tvar 0) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (Tderef 0) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (Tbin (Tvar 0) Oplus (Tconst 13)) = Vint 55

predicate eval_fmla (sigma:env) (pi:env) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (IdMap.set pi x (eval_term sigma pi t)) f
  | Fforall x Tint f ->
     forall n:int. eval_fmla sigma (IdMap.set pi x (Vint n)) f
  | Fforall x Tbool f ->
     forall b:bool.
        eval_fmla sigma (IdMap.set pi x (Vbool b)) f
  end

(* substitution of a *reference* r by a logic variable v
   warning: proper behavior only guaranted if v is fresh *)

function subst_term (e:term) (r:ident) (v:ident) : term =
  match e with
  | Tconst _ -> e
  | Tvar _ -> e
  | Tderef x -> if r=x then Tvar v else e
  | Tbin e1 op e2 -> Tbin (subst_term e1 r v) op (subst_term e2 r v)
  end

predicate fresh_in_term (id:ident) (t:term) =
  match t with
  | Tconst _ -> true
  | Tvar v -> id <> v
  | Tderef _ -> true
  | Tbin t1 _ t2 -> fresh_in_term id t1 /\ fresh_in_term id t2
  end

lemma eval_subst_term:
  forall sigma pi:env, e:term, x:ident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (subst_term e x v) =
    eval_term (IdMap.set sigma x (IdMap.get pi v)) pi e

lemma eval_term_change_free :
  forall t:term, sigma pi:env, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (IdMap.set pi id v) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
MARCHE Claude's avatar
MARCHE Claude committed
125
  | Fand f1 f2   | Fimplies f1 f2 ->
MARCHE Claude's avatar
MARCHE Claude committed
126 127 128 129 130 131 132 133 134 135 136 137
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
138
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
MARCHE Claude's avatar
MARCHE Claude committed
139 140 141 142 143 144 145 146 147 148 149 150 151
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end


lemma eval_subst:
  forall f:fmla, sigma pi:env, x:ident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (subst f x v) <->
     eval_fmla (IdMap.set sigma x (IdMap.get pi v)) pi f)

lemma eval_swap:
  forall f:fmla, sigma pi:env, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
MARCHE Claude's avatar
MARCHE Claude committed
152
    (eval_fmla sigma (IdMap.set (IdMap.set pi id1 v1) id2 v2) f <->
MARCHE Claude's avatar
MARCHE Claude committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    eval_fmla sigma (IdMap.set (IdMap.set pi id2 v2) id1 v1) f)

lemma eval_change_free :
  forall f:fmla, sigma pi:env, id:ident, v:value.
    fresh_in_fmla id f ->
    (eval_fmla sigma (IdMap.set pi id v) f <-> eval_fmla sigma pi f)

(* statements *)

type stmt =
  | Sskip
  | Sassign ident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt

lemma check_skip:
  forall s:stmt. s=Sskip \/s<>Sskip

(* small-steps semantics for statements *)

inductive one_step env env stmt env env stmt =

  | one_step_assign:
      forall sigma pi:env, x:ident, e:term.
        one_step sigma pi (Sassign x e)
                 (IdMap.set sigma x (eval_term sigma pi e)) pi
                 Sskip

  | one_step_seq:
      forall sigma pi sigma' pi':env, i1 i1' i2:stmt.
        one_step sigma pi i1 sigma' pi' i1' ->
          one_step sigma pi (Sseq i1 i2) sigma' pi' (Sseq i1' i2)

  | one_step_seq_skip:
      forall sigma pi:env, i:stmt.
        one_step sigma pi (Sseq Sskip i) sigma pi i

  | one_step_if_true:
      forall sigma pi:env, e:term, i1 i2:stmt.
        eval_term sigma pi e = (Vbool True) ->
          one_step sigma pi (Sif e i1 i2) sigma pi i1

  | one_step_if_false:
      forall sigma pi:env, e:term, i1 i2:stmt.
        eval_term sigma pi e = (Vbool False) ->
          one_step sigma pi (Sif e i1 i2) sigma pi i2

  | one_step_assert:
      forall sigma pi:env, f:fmla.
        eval_fmla sigma pi f ->
          one_step sigma pi (Sassert f) sigma pi Sskip

  | one_step_while_true:
      forall sigma pi:env, e:term, inv:fmla, i:stmt.
        eval_fmla sigma pi inv ->
        eval_term sigma pi e = (Vbool True) ->
          one_step sigma pi (Swhile e inv i) sigma pi (Sseq i (Swhile e inv i))

  | one_step_while_false:
      forall sigma pi:env, e:term, inv:fmla, i:stmt.
        eval_fmla sigma pi inv ->
        eval_term sigma pi e = (Vbool False) ->
          one_step sigma pi (Swhile e inv i) sigma pi Sskip

  goal Ass42 :
    let x = 0 in
    forall sigma' pi':env.
      one_step my_sigma my_pi (Sassign x (Tconst 42)) sigma' pi' Sskip ->
        IdMap.get sigma' x = Vint 42

  goal If42 :
    let x = 0 in
    forall sigma1 pi1 sigma2 pi2:env, i:stmt.
      one_step my_sigma my_pi
        (Sif (Tbin (Tderef x) Ole (Tconst 10))
             (Sassign x (Tconst 13))
             (Sassign x (Tconst 42)))
        sigma1 pi1 i ->
      one_step sigma1 pi1 i sigma2 pi2 Sskip ->
        IdMap.get sigma2 x = Vint 13

(*

  lemma progress:
    forall s:state, i:stmt.
      i <> Sskip ->
      exists s':state, i':stmt. one_step s i s' i'

*)

 (* many steps of execution *)

 inductive many_steps env env stmt env env stmt int =
   | many_steps_refl:
     forall sigma pi:env, i:stmt. many_steps sigma pi i sigma pi i 0
   | many_steps_trans:
     forall sigma1 pi1 sigma2 pi2 sigma3 pi3:env, i1 i2 i3:stmt, n:int.
       one_step sigma1 pi1 i1 sigma2 pi2 i2 ->
       many_steps sigma2 pi2 i2 sigma3 pi3 i3 n ->
       many_steps sigma1 pi1 i1 sigma3 pi3 i3 (n+1)

lemma steps_non_neg:
  forall sigma1 pi1 sigma2 pi2:env, i1 i2:stmt, n:int.
    many_steps sigma1 pi1 i1 sigma2 pi2 i2 n -> n >= 0

lemma many_steps_seq:
  forall sigma1 pi1 sigma3 pi3:env, i1 i2:stmt, n:int.
    many_steps sigma1 pi1 (Sseq i1 i2) sigma3 pi3 Sskip n ->
    exists sigma2 pi2:env, n1 n2:int.
      many_steps sigma1 pi1 i1 sigma2 pi2 Sskip n1 /\
      many_steps sigma2 pi2 i2 sigma3 pi3 Sskip n2 /\
      n = 1 + n1 + n2


predicate valid_fmla (p:fmla) = forall sigma pi:env. eval_fmla sigma pi p

(*** Hoare triples ***)

(* partial correctness *)
predicate valid_triple (p:fmla) (i:stmt) (q:fmla) =
    forall sigma pi:env. eval_fmla sigma pi p ->
      forall sigma' pi':env, n:int. many_steps sigma pi i sigma' pi' Sskip n ->
        eval_fmla sigma' pi' q

(* total correctness *)
(*
predicate total_valid_triple (p:fmla) (i:stmt) (q:fmla) =
    forall s:state. eval_fmla s p ->
      exists s':state, n:int. many_steps s i s' Sskip n /\
        eval_fmla s' q
*)

(* Hoare logic rules (partial correctness) *)

lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q

lemma assign_rule:
  forall q:fmla, x id:ident, e:term.
  fresh_in_fmla id q ->
  valid_triple (Flet id e (subst q x id)) (Sassign x e) q

lemma seq_rule:
  forall p q r:fmla, i1 i2:stmt.
  valid_triple p i1 r /\ valid_triple r i2 q ->
  valid_triple p (Sseq i1 i2) q

lemma if_rule:
  forall e:term, p q:fmla, i1 i2:stmt.
  valid_triple (Fand p (Fterm e)) i1 q /\
  valid_triple (Fand p (Fnot (Fterm e))) i2 q ->
  valid_triple p (Sif e i1 i2) q

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
  valid_triple p (Sassert f) p

lemma assert_rule_ext:
  forall f p:fmla.
  valid_triple (Fimplies f p) (Sassert f) p

lemma while_rule:
  forall e:term, inv:fmla, i:stmt.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:stmt.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')

lemma consequence_rule:
  forall p p' q q':fmla, i:stmt.
  valid_fmla (Fimplies p' p) ->
  valid_triple p i q ->
  valid_fmla (Fimplies q q') ->
  valid_triple p' i q'

(* frame rule *)

use set.Set

MARCHE Claude's avatar
MARCHE Claude committed
338
predicate assigns (sigma:env) (a:Set.set ident) (sigma':env) =
MARCHE Claude's avatar
MARCHE Claude committed
339
  forall i:ident. not (Set.mem i a) ->
MARCHE Claude's avatar
MARCHE Claude committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set ident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set ident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set ident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set ident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

MARCHE Claude's avatar
MARCHE Claude committed
358

MARCHE Claude's avatar
MARCHE Claude committed
359 360 361 362 363 364 365 366
predicate stmt_writes (i:stmt) (w:Set.set ident) =
  match i with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 | Sif _ s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ s -> stmt_writes s w
  end

MARCHE Claude's avatar
MARCHE Claude committed
367 368 369 370 371 372 373
end


module WP

  use import Imp

MARCHE Claude's avatar
MARCHE Claude committed
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  use set.Set

  let rec compute_writes (s:stmt) : Set.set ident =
   { }
    match s with
    | Sskip -> Set.empty
    | Sassign i _ -> Set.singleton i
    | Sseq s1 s2 -> Set.union (compute_writes s1) (compute_writes s2)
    | Sif _ s1 s2 -> Set.union (compute_writes s1) (compute_writes s2)
    | Swhile _ _ s -> compute_writes s
    | Sassert _ -> Set.empty
    end
   { forall sigma pi sigma' pi':env, n:int.
       many_steps sigma pi s sigma' pi' Sskip n ->
       assigns sigma result sigma' }

  val fresh_from_fmla (q:fmla) :
MARCHE Claude's avatar
MARCHE Claude committed
391 392 393 394
     { }
     ident
     { fresh_in_fmla result q }

MARCHE Claude's avatar
MARCHE Claude committed
395 396 397
  val abstract_effects (i:stmt) (f:fmla) :
    { }
    fmla
MARCHE Claude's avatar
MARCHE Claude committed
398 399 400
    { forall sigma pi sigma' pi':env, w:Set.set ident .
        eval_fmla sigma pi f /\ stmt_writes i w /\
        assigns sigma w sigma' ->
MARCHE Claude's avatar
MARCHE Claude committed
401 402 403
        eval_fmla sigma' pi' f
     }

MARCHE Claude's avatar
MARCHE Claude committed
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  let rec wp (i:stmt) (q:fmla) =
    { true }
    match i with
    | Sskip -> q
    | Sseq i1 i2 -> wp i1 (wp i2 q)
    | Sassign x e ->
        let id = fresh_from_fmla q in Flet id e (subst q x id)
    | Sif e i1 i2 ->
        Fand (Fimplies (Fterm e) (wp i1 q))
             (Fimplies (Fnot (Fterm e)) (wp i2 q))
    | Sassert f ->
       Fimplies f q (* liberal wp, no termination required *)
       (* Fand f q *) (* strict wp, termination required *)
    | Swhile e inv i ->
        Fand inv
MARCHE Claude's avatar
MARCHE Claude committed
419 420 421 422
          (abstract_effects i
            (Fand
                (Fimplies (Fand (Fterm e) inv) (wp i inv))
                (Fimplies (Fand (Fnot (Fterm e)) inv) q))) 
MARCHE Claude's avatar
MARCHE Claude committed
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    end
    { valid_triple result i q }


end



(*
Local Variables:
compile-command: "why3ide -I . wp2.mlw"
End:
*)