parser.mly 20 KB
Newer Older
1
2
/**************************************************************************/
/*                                                                        */
Jean-Christophe Filliâtre's avatar
headers    
Jean-Christophe Filliâtre committed
3
4
5
6
7
/*  Copyright (C) 2010-                                                   */
/*    Francois Bobot                                                      */
/*    Jean-Christophe Filliatre                                           */
/*    Johannes Kanig                                                      */
/*    Andrei Paskevich                                                    */
8
9
10
11
12
13
14
15
16
17
18
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

%{

  open Ptree
  open Parsing

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
  let mk_pp d = mk_ppl (loc ()) d
  let mk_pp_i i d = mk_ppl (loc_i i) d
		    
  let infix_ppl loc a i b = mk_ppl loc (PPinfix (a, i, b))
  let infix_pp a i b = infix_ppl (loc ()) a i b

  let prefix_ppl loc p a = mk_ppl loc (PPprefix (p, a))
  let prefix_pp p a = prefix_ppl (loc ()) p a

(***
  let with_loc loc d = { pdesc = d; ploc = loc }
  let locate d = with_loc (loc ()) d
  let locate_i i d = with_loc (loc_i i) d

  let rec_name = function Srec (x,_,_,_,_,_) -> x | _ -> assert false

  let join (b,_) (_,e) = (b,e)

  let rec app f = function
    | [] -> 
	assert false
    | [a] -> 
	Sapp (f, a)
    | a :: l -> 
	let loc = join f.ploc a.ploc in 
	app (with_loc loc (Sapp (f, a))) l

  let bin_op (loc_op,op) e1 e2 =
    let f = with_loc loc_op (Svar op) in
    let f_e1 = with_loc (join e1.ploc loc_op) (Sapp (f, e1)) in
    locate (Sapp (f_e1, e2))
      
  let un_op (loc_op,op) e =
    locate (app (with_loc loc_op (Svar op)) [e])

  let ptype_c_of_v v =
    { pc_result_name = Ident.result;
      pc_result_type = v;
      pc_effect = { pe_reads = []; pe_writes = []; pe_raises = [] };
      pc_pre = []; 
      pc_post = None }

  let list_of_some = function None -> [] | Some x -> [x]

  (*s ensures a postcondition for a function body *)

  let force_function_post ?(warn=false) e = match e.pdesc with
    | Spost _ -> 
	e
    | _ -> 
       if warn then 
	 Format.eprintf 
	   "%ano postcondition for this function; true inserted@\n"
	   Loc.report_position e.ploc; 
       let q = 
	 { pa_name = Anonymous; pa_value = mk_pp PPtrue; pa_loc = loc () }
       in
       { e with pdesc = Spost (e, (q, []), Transparent) }
***)
%}

/* Tokens */ 

93
%token <string> LIDENT UIDENT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
94
95
96
97
98
%token <string> INTEGER
%token <Ptree.real_constant> FLOAT
%token <string> STRING
%token ABSURD AMPAMP AND ARRAY ARROW AS ASSERT AT AXIOM 
%token BANG BAR BARBAR BEGIN 
99
100
101
102
103
%token BIGARROW BOOL CHECK CLONE COLON COLONEQUAL COMMA DO 
%token DONE DOT ELSE END EOF EQUAL
%token EXCEPTION EXISTS EXPORT EXTERNAL FALSE FOR FORALL FPI 
%token FUN FUNCTION GE GOAL GT
%token IF IMPORT IN INCLUDE INDUCTIVE INT INVARIANT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
104
%token LE LEFTB LEFTBLEFTB LEFTPAR LEFTSQ LET LOGIC LRARROW LT MATCH MINUS
105
%token NAMESPACE NOT NOTEQ OF OR PARAMETER PERCENT PLUS PREDICATE PROP 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
106
107
108
%token QUOTE RAISE RAISES READS REAL REC REF RETURNS RIGHTB RIGHTBRIGHTB
%token RIGHTPAR RIGHTSQ 
%token SEMICOLON SLASH 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
109
%token THEN THEORY TIMES TRUE TRY TYPE UNDERSCORE
110
%token UNIT USE VARIANT VOID WHILE WITH WRITES
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

/* Precedences */

%nonassoc prec_recfun
%nonassoc prec_fun
%left LEFTB LEFTBLEFTB
%left prec_simple

%left COLON 

%left prec_letrec
%left IN

%right SEMICOLON

%left prec_no_else
%left ELSE

%right prec_named
%left COLONEQUAL
%right prec_forall prec_exists
%right ARROW LRARROW
%right OR BARBAR
%right AND AMPAMP
%right NOT
%right prec_if
%left prec_relation EQUAL NOTEQ LT LE GT GE
%left PLUS MINUS
%left TIMES SLASH PERCENT
%right uminus
%left prec_app
%left prec_ident
%left LEFTSQ

/* Entry points */

%type <Ptree.lexpr> lexpr
%start lexpr
%type <Ptree.logic_file> logic_file
%start logic_file
%%

logic_file:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
154
155
| list1_theory EOF
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
156
157
158
159
160
161
162
163
164
165
166
| EOF 
   { [] }
;

list1_decl:
| decl 
   { [$1] }
| decl list1_decl 
   { $1 :: $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
167
168
169
170
171
172
173
list0_decl:
| /* epsilon */
   { [] }
| list1_decl 
   { $1 }
;

174
ident:
175
176
| LIDENT { { id = $1; id_loc = loc () } }
| UIDENT { { id = $1; id_loc = loc () } }
177
178
;

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
lident:
| LIDENT { { id = $1; id_loc = loc () } }
;

uident:
| UIDENT { { id = $1; id_loc = loc () } }
;

lqualid:
| lident             { Qident $1 }
| uqualid DOT lident { Qdot ($1, $3) }
;

uqualid:
| uident             { Qident $1 }
| uqualid DOT uident { Qdot ($1, $3) }
195
196
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
197
198
199
any_qualid:
| ident                { Qident $1 }
| any_qualid DOT ident { Qdot ($1, $3) }
200
201
;

202
qualid:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
203
204
| ident             { Qident $1 }
| uqualid DOT ident { Qdot ($1, $3) }
205

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
206
decl:
207
208
| LOGIC list1_lident_sep_comma COLON logic_type
   { Logic (loc_i 3, $2, $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
209
| AXIOM uident COLON lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
210
   { Axiom (loc (), $2, $4) }
211
| PREDICATE lident LEFTPAR list0_logic_binder_sep_comma RIGHTPAR EQUAL lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
212
   { Predicate_def (loc (), $2, $4, $7) }
213
| INDUCTIVE lident COLON logic_type inddefn
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
214
   { Inductive_def (loc (), $2, $4, $5) }
215
| FUNCTION lident LEFTPAR list0_logic_binder_sep_comma RIGHTPAR COLON 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
216
217
  primitive_type EQUAL lexpr
   { Function_def (loc (), $2, $4, $7, $9) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
218
| GOAL uident COLON lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
219
220
221
   { Goal (loc (), $2, $4) }
| TYPE typedecl typedefn
   { let loc, vl, id = $2 in $3 loc vl id }
222
223
224
225
| USE use
   { Use (loc (), $2) }
| NAMESPACE uident list0_decl END
   { Namespace (loc (), $2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
226
227
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
228
229
230
231
232
233
234
235
list1_theory:
| theory 
   { [$1] }
| theory list1_theory 
   { $1 :: $2 }
;

theory:
236
| THEORY uident list0_decl END 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
237
   { { pt_loc = loc (); pt_name = $2; pt_decl = $3 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
238
239
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
240
typedecl:
241
| lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
242
    { (loc_i 1, [], $1) }
243
| type_var lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
244
    { (loc_i 2, [$1], $2) }
245
| LEFTPAR type_var COMMA list1_type_var_sep_comma RIGHTPAR lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
246
247
248
249
250
    { (loc_i 6, $2 :: $4, $6) }
;

typedefn:
| /* epsilon */
251
    { fun loc vl id -> TypeDecl (loc, vl, id) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
| EQUAL bar_ typecases typecont
    { fun loc vl id -> AlgType ((loc, vl, id, $3) :: $4) }
;

typecont:
| /* epsilon */
    { [] }
| AND typedecl EQUAL bar_ typecases typecont
    { let loc, vl, id = $2 in (loc, vl, id, $5) :: $6 }
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
269
| uident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
270
    { (loc_i 1,$1,[]) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
271
| uident LEFTPAR list1_primitive_type_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    { (loc_i 1,$1,$3) }
;

inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
286
| uident COLON lexpr { (loc_i 1,$1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
287
288
289
;

primitive_type:
290
/*
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
291
292
293
294
295
296
297
298
| INT 
   { PPTint }
| BOOL 
   { PPTbool }
| REAL 
   { PPTreal }
| UNIT 
   { PPTunit }
299
*/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
300
| type_var 
301
   { PPTtyvar $1 }
302
| lqualid
303
   { PPTtyapp ([], $1) }
304
| primitive_type lqualid
305
   { PPTtyapp ([$1], $2) }
306
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR lqualid
307
   { PPTtyapp ($2 :: $4, $6) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
| LEFTPAR list1_primitive_type_sep_comma RIGHTPAR
   { match $2 with [p] -> p | _ -> raise Parse_error }
*/
;


logic_type:
| list0_primitive_type_sep_comma ARROW PROP
   { PPredicate $1 }
| PROP
   { PPredicate [] }
| list0_primitive_type_sep_comma ARROW primitive_type
   { PFunction ($1, $3) }
| primitive_type
   { PFunction ([], $1) }
;

list0_primitive_type_sep_comma:
| /* epsilon */                  { [] }
| list1_primitive_type_sep_comma { $1 }
;

list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

list0_logic_binder_sep_comma:
| /* epsilon */                { [] }
| list1_logic_binder_sep_comma { $1 }
;

list1_logic_binder_sep_comma:
| logic_binder                                    { [$1] }
| logic_binder COMMA list1_logic_binder_sep_comma { $1 :: $3 }
;

logic_binder:
347
| lident COLON primitive_type       
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    { (loc_i 1, $1, $3) }
/***
| ident COLON primitive_type ARRAY 
    { (loc_i 1, $1, PPTexternal ([$3], Ident.farray, loc_i 3)) }
***/
;

lexpr:
| lexpr ARROW lexpr 
   { infix_pp $1 PPimplies $3 }
| lexpr LRARROW lexpr 
   { infix_pp $1 PPiff $3 }
| lexpr OR lexpr 
   { infix_pp $1 PPor $3 }
| lexpr AND lexpr 
   { infix_pp $1 PPand $3 }
| NOT lexpr 
   { prefix_pp PPnot $2 }
| lexpr relation lexpr %prec prec_relation
   { infix_pp $1 $2 $3 }
| lexpr PLUS lexpr
   { infix_pp $1 PPadd $3 }
| lexpr MINUS lexpr
   { infix_pp $1 PPsub $3 }
| lexpr TIMES lexpr
   { infix_pp $1 PPmul $3 }
| lexpr SLASH lexpr
   { infix_pp $1 PPdiv $3 }
| lexpr PERCENT lexpr
   { infix_pp $1 PPmod $3 }
| MINUS lexpr %prec uminus
   { prefix_pp PPneg $2 }
380
| qualid
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
381
   { mk_pp (PPvar $1) }
382
| qualid LEFTPAR list1_lexpr_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
383
   { mk_pp (PPapp ($1, $3)) }
384
/***
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
385
386
387
388
389
| qualid_ident LEFTSQ lexpr RIGHTSQ
   { mk_pp (PPapp (Ident.access, [mk_pp_i 1 (PPvar $1); $3])) }
***/
| IF lexpr THEN lexpr ELSE lexpr %prec prec_if 
   { mk_pp (PPif ($2, $4, $6)) }
390
| FORALL list1_lident_sep_comma COLON primitive_type triggers 
391
  DOT lexpr %prec prec_forall
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
392
393
394
395
396
397
   { let rec mk = function
       | [] -> assert false
       | [id] -> mk_pp (PPforall (id, $4, $5, $7))
       | id :: l -> mk_pp (PPforall (id, $4, [], mk l))
     in
     mk $2 }
398
| EXISTS lident COLON primitive_type DOT lexpr %prec prec_exists
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
   { mk_pp (PPexists ($2, $4, $6)) }
| INTEGER
   { mk_pp (PPconst (ConstInt $1)) }
| FLOAT
   { mk_pp (PPconst (ConstFloat $1)) }
| TRUE
   { mk_pp PPtrue }
| FALSE
   { mk_pp PPfalse }    
/***
| VOID
   { mk_pp (PPconst ConstUnit) }
***/
| LEFTPAR lexpr RIGHTPAR
   { $2 }
| ident_or_string COLON lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $3)) }
416
| LET lident EQUAL lexpr IN lexpr 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
   { mk_pp (PPlet ($2, $4, $6)) }
| MATCH lexpr WITH bar_ match_cases END
   { mk_pp (PPmatch ($2, $5)) }
;

match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
| pattern ARROW lexpr { ($1,$3) }
;

pattern:
432
| uqualid                                         { ($1, [], loc ()) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
433
| uqualid LEFTPAR list1_lident_sep_comma RIGHTPAR  { ($1, $3, loc ()) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
;

triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;

list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
  list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

relation:
| LT { PPlt }
| LE { PPle }
| GT { PPgt }
| GE { PPge }
| EQUAL { PPeq }
| NOTEQ { PPneq }
;

type_var:
| QUOTE ident { $2 }
;

list1_type_var_sep_comma:
| type_var                                { [$1] }
| type_var COMMA list1_type_var_sep_comma { $1 :: $3 }
;

473
/***
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
474
475
476
477
478
qualid_ident:
| IDENT          { $1, None }
| IDENT AT       { $1, Some "" }
| IDENT AT IDENT { $1, Some $3 }
;
479
***/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
480
481

ident_or_string:
482
| ident  { $1.id }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
483
484
485
486
487
488
489
490
| STRING { $1 }
;

bar_:
| /* epsilon */ { () }
| BAR           { () }
;

491
492
493
494
495
list1_lident_sep_comma:
| lident                              { [$1] }
| lident COMMA list1_lident_sep_comma { $1 :: $3 }
;

496
use:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
497
| imp_exp any_qualid              
498
    { { use_theory = $2; use_as = None; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
499
500
| imp_exp any_qualid AS uident
    { { use_theory = $2; use_as = Some $4; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
501
502
;

503
504
505
506
imp_exp:
| IMPORT        { Import }
| EXPORT        { Export }
| /* epsilon */ { Nothing }
507
508
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
/******* programs **************************************************

list0_ident_sep_comma:
| /* epsilon * /         { [] }
| list1_ident_sep_comma { $1 }
;

decl:
| INCLUDE STRING
   { Include (loc_i 2,$2) }
| LET ident EQUAL expr
   { Program (loc_i 2,$2, $4) }
| LET ident binders EQUAL list0_bracket_assertion expr
   { Program (loc_i 2,$2, locate (Slam ($3, $5, force_function_post $6))) }
| LET REC recfun
   { let (loc,p) = $3 in Program (loc,rec_name p, locate p) }
| EXCEPTION ident
   { Exception (loc (), $2, None) }
| EXCEPTION ident OF primitive_type
   { Exception (loc (), $2, Some $4) }
| external_ PARAMETER list1_ident_sep_comma COLON type_v
   { Parameter (loc_i 3, $1, $3, $5) }

type_v:
| simple_type_v ARROW type_c
   { PVarrow ([Ident.anonymous, $1], $3) }
| ident COLON simple_type_v ARROW type_c
   { PVarrow ([($1, $3)], $5) }
| simple_type_v
   { $1 }
;

simple_type_v:
| primitive_type ARRAY    { PVref (PPTexternal ([$1], Ident.farray, loc_i 2)) }
| primitive_type REF      { PVref $1 }
| primitive_type          { PVpure $1 }
| LEFTPAR type_v RIGHTPAR { $2 }
;

type_c:
| LEFTB opt_assertion RIGHTB result effects LEFTB opt_post_condition RIGHTB
   { let id,v = $4 in
     { pc_result_name = id; pc_result_type = v;
       pc_effect = $5; pc_pre = list_of_some $2; pc_post = $7 } }
| type_v
   { ptype_c_of_v $1 }
;

result:
| RETURNS ident COLON type_v { $2, $4 }
| type_v                     { Ident.result, $1 }
;

effects:
| opt_reads opt_writes opt_raises
    { { pe_reads = $1; pe_writes = $2; pe_raises = $3 } }
;

opt_reads:
| /* epsilon * /               { [] }
| READS list0_ident_sep_comma { $2 }
;

opt_writes:
| /* epsilon * /                { [] }
| WRITES list0_ident_sep_comma { $2 }
;

opt_raises:
| /* epsilon * /                { [] }
| RAISES list0_ident_sep_comma { $2 }
;

opt_assertion:
| /* epsilon * /  { None }
| assertion      { Some $1 }
;

assertion:
| lexpr          
    { { pa_name = Anonymous; pa_value = $1; pa_loc = loc () } }
| lexpr AS ident 
    { { pa_name = Name $3; pa_value = $1; pa_loc = loc () } }
;

opt_post_condition:
| /* epsilon * /  { None }
| post_condition { Some $1 }
;

post_condition:
| assertion 
   { $1, [] }
| assertion BAR list1_exn_condition_sep_bar
   { $1, $3 }
| BAR list1_exn_condition_sep_bar
   { Format.eprintf "%awarning: no postcondition; false inserted@\n" 
       Loc.report_position (loc ());
     (* if Options.werror then exit 1; *)
     ({ pa_name = Anonymous; pa_value = mk_pp PPfalse; pa_loc = loc () }, $2) }
;

bracket_assertion:
| LEFTB assertion RIGHTB { $2 }
;

list1_bracket_assertion:
| bracket_assertion                         { [$1] }
| bracket_assertion list1_bracket_assertion { $1 :: $2 }
;

list0_bracket_assertion:
| /* epsilon * /           { [] }
| LEFTB RIGHTB            { [] }
| list1_bracket_assertion { $1 }
;

list1_exn_condition_sep_bar:
| exn_condition                                 { [$1] }
| exn_condition BAR list1_exn_condition_sep_bar { $1 :: $3 }
;

exn_condition:
| ident BIGARROW assertion { $1,$3 }
;

expr:
| simple_expr %prec prec_simple 
   { $1 }
| ident COLONEQUAL expr
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.ref_set), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| ident LEFTSQ expr RIGHTSQ COLONEQUAL expr
   { locate 
       (Sapp (locate 
		(Sapp (locate 
			 (Sapp (locate (Svar Ident.array_set), 
				locate_i 1 (Svar $1))),
			 $3)),
		$6)) }
| IF expr THEN expr ELSE expr
   { locate (Sif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { locate (Sif ($2, $4, locate (Sconst ConstUnit))) }
| WHILE expr DO invariant_variant expr DONE
   { (* syntactic suget for
        try loop { invariant variant } if b then e else raise Exit
        with Exit -> void end *)
     let inv,var = $4 in
     locate 
       (Stry
	  (locate 
	     (Sloop (inv, var, 
		     locate 
		       (Sif ($2, $5,
			     locate (Sraise (exit_exn, None, None)))))),
	     [((exit_exn, None), locate (Sconst ConstUnit))])) }
| IDENT COLON expr
   { locate (Slabel ($1, $3)) }
| LET ident EQUAL expr IN expr
   { locate (Sletin ($2, $4, $6)) }
| LET ident EQUAL REF expr IN expr
   { locate (Sletref ($2, $5, $7)) }
| FUN binders ARROW list0_bracket_assertion expr %prec prec_fun
   { locate (Slam ($2, $4, force_function_post $5)) }
| LET ident binders EQUAL list0_bracket_assertion expr IN expr
   { let b =  force_function_post ~warn:true $6 in
     locate (Sletin ($2, locate (Slam ($3, $5, b)), $8)) }
| LET REC recfun %prec prec_letrec
   { let _loc,p = $3 in locate p }
| LET REC recfun IN expr
   { let _loc,p = $3 in locate (Sletin (rec_name p, locate p, $5)) }
| RAISE ident opt_cast
   { locate (Sraise ($2, None, $3)) }
| RAISE LEFTPAR ident expr RIGHTPAR opt_cast
   { locate (Sraise ($3, Some $4 , $6)) }
| TRY expr WITH bar_ list1_handler_sep_bar END
   { locate (Stry ($2, $5)) }
| ABSURD opt_cast
   { locate (Sabsurd $2) }
| simple_expr list1_simple_expr %prec prec_app
   { locate (app $1 $2) }
| expr BARBAR expr
   { locate (Slazy_or ($1, $3))
     (* let ptrue = locate (Sconst (ConstBool true)) in
     locate (Sif ($1, ptrue, $3)) *) }
| expr AMPAMP expr
   { locate (Slazy_and ($1, $3))
     (* let pf = locate (Sconst (ConstBool false)) in
     locate (Sif ($1, $3, pf)) *) }
| NOT expr
   { locate (Snot $2)
     (* let pf = locate (Sconst (ConstBool false)) in
     let pt = locate (Sconst (ConstBool true)) in
     locate (Sif ($2, pf, pt)) *) }
| expr relation_id expr %prec prec_relation
   { bin_op $2 $1 $3 }
| expr PLUS expr
   { bin_op (loc_i 2, Ident.t_add) $1 $3 }
| expr MINUS expr
   { bin_op (loc_i 2, Ident.t_sub) $1 $3 }
| expr TIMES expr
   { bin_op (loc_i 2, Ident.t_mul) $1 $3 }
| expr SLASH expr
   { bin_op (loc_i 2, Ident.t_div) $1 $3 }
| expr PERCENT expr
   { bin_op (loc_i 2, Ident.t_mod_int) $1 $3 }
| MINUS expr %prec uminus
   { un_op (loc_i 1, Ident.t_neg) $2 }
| expr SEMICOLON expr
   { locate (Sseq ($1, $3)) }
| ASSERT list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`ASSERT,$2, $4)) }
| CHECK list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`CHECK,$2, $4)) }
| expr LEFTB post_condition RIGHTB
   { locate (Spost ($1, $3, Transparent)) }
| expr LEFTBLEFTB post_condition RIGHTBRIGHTB
   { locate (Spost ($1, $3, Opaque)) }
;

simple_expr:
| ident %prec prec_ident
   { locate (Svar $1) }
| INTEGER
   { locate (Sconst (ConstInt $1)) }
| FLOAT
   { let f = $1 in locate (Sconst (ConstFloat f)) }
| VOID
   { locate (Sconst ConstUnit) }
| TRUE
   { locate (Sconst (ConstBool true)) }
| FALSE
   { locate (Sconst (ConstBool false)) }
| BANG ident
   { locate (Sderef $2) }
| ident LEFTSQ expr RIGHTSQ
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.array_get), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| LEFTSQ type_c RIGHTSQ
   { locate (Sany $2) }
| LEFTPAR expr RIGHTPAR
   { $2 }
| BEGIN expr END
   { $2 }
;

relation_id:
| LT    { loc (), Ident.t_lt }
| LE    { loc (), Ident.t_le }
| GT    { loc (), Ident.t_gt }
| GE    { loc (), Ident.t_ge }
| EQUAL { loc (), Ident.t_eq }
| NOTEQ { loc (), Ident.t_neq }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

list1_handler_sep_bar:
| handler                           { [$1] }
| handler BAR list1_handler_sep_bar { $1 :: $3 }
;

handler:
| ident ARROW expr       { (($1, None), $3) }
| ident ident ARROW expr { (($1, Some $2), $4) }
;

opt_cast:
| /* epsilon * / { None }
| COLON type_v  { Some $2 }
;

invariant_variant:
| /* epsilon * / { None, None }
| LEFTB opt_invariant RIGHTB { $2, None }
| LEFTB opt_invariant VARIANT variant RIGHTB { $2, Some $4 }
;

opt_invariant:
| /* epsilon * /       { None }
| INVARIANT assertion { Some $2 }
;

recfun:
| ident binders COLON type_v opt_variant EQUAL 
  list0_bracket_assertion expr %prec prec_recfun
   { (loc_i 1),Srec ($1, $2, $4, $5, $7, force_function_post $8) }
;

opt_variant:
| LEFTB VARIANT variant RIGHTB { Some $3 } 
| /* epsilon * /                { None }
;

variant:
| lexpr FOR ident { ($1, $3) }
| lexpr           { ($1, Ident.t_zwf_zero) }
;

binders:
| list1_binder { List.flatten $1 }
;

list1_binder:
| binder              { [$1] }
| binder list1_binder { $1 :: $2 }
;

binder:
| LEFTPAR RIGHTPAR
   { [Ident.anonymous, PVpure PPTunit] }
| LEFTPAR list1_ident_sep_comma COLON type_v RIGHTPAR 
   { List.map (fun s -> (s, $4)) $2 }
;

****/