parser.mly 31.9 KB
Newer Older
1
2
3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2015   --   INRIA - CNRS - Paris-Sud University  *)
5
6
7
8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11
12

%{
13
module Increment = struct
14
15
16
17
18
19
20
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
21
22
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
23
24
25
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
26
end
27

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
28
29
  open Ptree

30
  let infix  s = "infix "  ^ s
31
  let prefix s = "prefix " ^ s
Andrei Paskevich's avatar
Andrei Paskevich committed
32
  let mixfix s = "mixfix " ^ s
33

34
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
Andrei Paskevich's avatar
Andrei Paskevich committed
35

36
  let floc s e = Loc.extract (s,e)
Andrei Paskevich's avatar
Andrei Paskevich committed
37

38
  let model_label = Ident.create_label "model"
39
  let model_projected = Ident.create_label "model_projected"
40
41
42
43
44

  let is_model_label l =
    match l with
    | Lpos _ -> false
    | Lstr lab ->
45
46
      (lab = model_label) || (lab = model_projected)

47

48
  let model_lab_present labels =
49
50
51
52
53
54
55
56
57
58
59
    try
      ignore(List.find is_model_label labels);
      true
    with Not_found ->
      false

  let model_trace_regexp = Str.regexp "model_trace:"

  let is_model_trace_label l =
    match l with
    | Lpos _ -> false
60
    | Lstr lab ->
61
      try
62
	ignore(Str.search_forward model_trace_regexp lab.Ident.lab_string 0);
63
64
65
66
67
68
69
70
71
72
73
	true
      with Not_found -> false

  let model_trace_lab_present labels =
    try
      ignore(List.find is_model_trace_label labels);
      true
    with Not_found ->
      false

  let add_model_trace name labels =
74
    if (model_lab_present labels) && (not (model_trace_lab_present labels)) then
75
76
      (Lstr (Ident.create_label ("model_trace:" ^ name)))::labels
    else
77
      labels
78
79
80
81

  let add_lab id l =
    let l = add_model_trace id.id_str l in
    { id with id_lab = l }
82

83
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
84

85
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
86

87
88
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
89
90
91
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
92

93
94
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
95
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
96

97
98
99
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
100
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
101
102
103
104
105
106
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
107
    sp_reads   = [];
108
109
    sp_writes  = [];
    sp_variant = [];
110
111
    sp_checkrw = false;
    sp_diverge = false;
112
  }
113

114
115
116
117
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
118
    sp_reads   = s1.sp_reads @ s2.sp_reads;
119
120
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
121
122
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
123
  }
124

125
(* dead code
126
  let add_init_mark e =
127
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
128
    { e with expr_desc = Emark (init, e) }
129
*)
130

131
  let small_integer i =
132
    try match i with
133
134
135
136
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
137
    with Failure _ -> raise Error
138

139
140
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
141

142
143
144
145
146
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
147
148
%}

149
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150

151
%token <string> LIDENT UIDENT
152
%token <Ptree.integer_constant> INTEGER
153
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
154
155
%token <Ptree.real_constant> FLOAT
%token <string> STRING
156
%token <Loc.position> POSITION
157
%token <string> QUOTE_UIDENT QUOTE_LIDENT OPAQUE_QUOTE_LIDENT
158

159
(* keywords *)
160

161
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
162
163
164
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
Andrei Paskevich's avatar
Andrei Paskevich committed
165
%token THEN THEORY TRUE TYPE USE WITH
166

167
(* program keywords *)
168

169
170
171
172
173
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
174

175
(* symbols *)
176

Andrei Paskevich's avatar
Andrei Paskevich committed
177
%token AND ARROW
178
%token BAR
179
%token COLON COMMA
180
%token DOT DOTDOT EQUAL LAMBDA LTGT
181
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
182
%token LARROW LRARROW OR
183
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
184
%token UNDERSCORE
185
186
187

%token EOF

188
(* program symbols *)
189

190
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
191

192
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
193

194
%nonassoc IN
195
196
197
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
198
%nonassoc prec_no_else
199
%nonassoc DOT ELSE GHOST
200
%nonassoc prec_named
201
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
202

Andrei Paskevich's avatar
Andrei Paskevich committed
203
%right ARROW LRARROW
204
205
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
206
%nonassoc NOT
207
%left EQUAL LTGT OP1
208
%nonassoc LARROW
209
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
210
%left OP2
211
%left OP3
212
%left OP4
213
%nonassoc prec_prefix_op
214
215
%nonassoc LEFTSQ
%nonassoc OPPREF
216

217
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
218

219
220
%start <Ptree.incremental -> unit> open_file
%start <unit> logic_file program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
221
222
%%

223
224
(* Theories, modules, namespaces *)

225
open_file:
226
(* Dummy token. Menhir does not accept epsilon. *)
227
| EOF { Increment.open_file }
228

Andrei Paskevich's avatar
Andrei Paskevich committed
229
logic_file:
230
| theory* EOF   { Increment.close_file () }
231

232
program_file:
233
| theory_or_module* EOF { Increment.close_file () }
234

235
theory:
236
| theory_head theory_decl* END  { Increment.close_theory () }
237

238
239
theory_or_module:
| theory                        { () }
240
| module_head module_decl* END  { Increment.close_module () }
241

242
theory_head:
243
| THEORY labels(uident)  { Increment.open_theory $2 }
244

245
module_head:
246
| MODULE labels(uident)  { Increment.open_module $2 }
247

248
theory_decl:
249
250
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
251
| namespace_head theory_decl* END
252
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
253

254
module_decl:
255
256
257
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| pdecl           { Increment.new_pdecl (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
258
| namespace_head module_decl* END
259
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
260

261
262
namespace_head:
| NAMESPACE boption(IMPORT) uident
263
   { Increment.open_namespace $3.id_str; $2 }
264

265
(* Use and clone *)
266

267
use_clone:
268
269
270
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
271

272
use:
273
| boption(IMPORT) tqualid
274
    { { use_theory = $2; use_import = Some ($1, qualid_last $2) } }
275
276
| boption(IMPORT) tqualid AS uident
    { { use_theory = $2; use_import = Some ($1, $4.id_str) } }
277
278
| EXPORT tqualid
    { { use_theory = $2; use_import = None } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
279

280
clone_subst:
281
282
| NAMESPACE ns EQUAL ns         { CSns    (floc $startpos $endpos, $2,$4) }
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
283
284
285
286
287
288
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
289

290
291
292
ns:
| uqualid { Some $1 }
| DOT     { None }
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| TYPE late_invariant                       { Dtype [$2] }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
308
309

meta_arg:
310
311
312
313
314
315
316
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
| PROP      qualid  { Mpr $2 }
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
317
318

(* Type declarations *)
319
320

type_decl:
321
| labels(lident) ty_var* typedefn
322
  { let model, vis, def, inv = $3 in
323
    let vis = if model then Abstract else vis in
324
325
326
    { td_ident = $1; td_params = $2;
      td_model = model; td_vis = vis; td_def = def;
      td_inv = inv; td_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
327

328
late_invariant:
329
| labels(lident) ty_var* invariant+
330
331
332
  { { td_ident = $1; td_params = $2;
      td_model = false; td_vis = Public; td_def = TDabstract;
      td_inv = $3; td_loc = floc $startpos $endpos } }
333

334
ty_var:
335
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
336
337

typedefn:
338
| (* epsilon *)
339
    { false, Public, TDabstract, [] }
340
| model abstract bar_list1(type_case) invariant*
341
    { $1, $2, TDalgebraic $3, $4 }
342
| model abstract LEFTBRC semicolon_list1(type_field) RIGHTBRC invariant*
343
    { $1, $2, TDrecord $4, $6 }
344
345
| model abstract ty invariant*
    { $1, $2, TDalias $3, $4 }
346

347
348
349
350
351
model:
| EQUAL         { false }
| MODEL         { true }

abstract:
352
| (* epsilon *) { Public }
353
354
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
355

356
357
358
359
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
360

361
field_modifiers:
362
| (* epsilon *) { false, false }
363
364
365
366
367
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

368
type_case:
369
| labels(uident) params { floc $startpos $endpos, $1, $2 }
370

371
(* Logic declarations *)
372

373
374
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
375
376
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
377

378
379
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
380
381
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
382

383
384
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
385
386
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
387

388
with_logic_decl:
389
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
390
391
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
392

393
(* Inductive declarations *)
394
395

inductive_decl:
396
| labels(lident_rich) params ind_defn
397
398
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
399

400
401
402
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
403

404
405
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
406

407
(* Type expressions *)
408

409
410
411
412
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
413

414
415
416
417
418
419
420
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
| quote_lident                      { PTtyvar ($1, false) }
| opaque_quote_lident               { PTtyvar ($1, true) }
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
421

422
423
cast:
| COLON ty  { $2 }
424

425
(* Parameters and binders *)
426

427
428
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
429
430
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
431
432
   names, whose type must be inferred. *)

433
params:  param*  { List.concat $1 }
434

435
binders: binder+ { List.concat $1 }
436
437
438

param:
| anon_binder
439
440
441
442
443
444
445
446
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
447
448
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
449
| LEFTPAR binder_vars_rest RIGHTPAR
450
    { match $2 with [l,_] -> error_param l
451
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
452
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
453
    { match $3 with [l,_] -> error_param l
454
455
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
456
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
457
| LEFTPAR GHOST binder_vars cast RIGHTPAR
458
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
459

460
461
binder:
| anon_binder
462
463
464
465
466
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
467
468
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
469
470
471
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
472
473
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
474
475
476
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
477
478
479
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
480
| LEFTPAR binder_vars_rest RIGHTPAR
481
    { match $2 with [l,i] -> [l, i, false, None]
482
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
483
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
484
    { match $3 with [l,i] -> [l, i, true, None]
485
486
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
487
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
488
| LEFTPAR GHOST binder_vars cast RIGHTPAR
489
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
490

491
492
493
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
494

495
binder_vars_rest:
496
497
498
499
500
501
502
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
503
   { List.rev_append $1 ($2 :: $3) }
504
| anon_binder binder_var*
505
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
506

507
binder_vars_head:
508
| ty {
509
510
    let of_id id = id.id_loc, Some id in
    let push acc = function
511
      | PTtyapp (Qident id, []) -> of_id id :: acc
512
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
513
    match $1 with
514
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
515
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
516

517
binder_var:
518
519
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
520
521

anon_binder:
522
523
| UNDERSCORE      { floc $startpos $endpos, None }

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
553
554
555
556
557
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
      | _ -> Tmatch ($4, [$2, $6]) }
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| quote_uident              { Tident (Qident $1) }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
600
601
602
603
604
605
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
606

607
608
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
609

610
611
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
612

613
614
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
615

616
617
618
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
619

620
621
622
623
624
625
626
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
627

628
629
630
631
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
| LAMBDA  { Tlambda }
632

633
634
635
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
636

637
(* Program declarations *)
638

639
pdecl:
640
| VAL top_ghost labels(lident_rich) type_v          { Dval ($3, $2, $4) }
641
| LET top_ghost labels(lident_rich) fun_defn        { Dfun ($3, $2, $4) }
642
| LET top_ghost labels(lident_rich) EQUAL fun_expr  { Dfun ($3, $2, $5) }
643
| LET REC with_list1(rec_defn)                      { Drec $3 }
644
645
| EXCEPTION labels(uident)                          { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                       { Dexn ($2, $3) }
646

647
648
649
650
651
652
top_ghost:
| (* epsilon *) { Gnone  }
| GHOST         { Gghost }
| LEMMA         { Glemma }

(* Function declarations *)
653
654

type_v:
655
| arrow_type_v  { $1 }
656
| cast          { PTpure $1 }
657
658

arrow_type_v:
659
| param params tail_type_c  { PTfunc ($1 @ $2, $3) }
660
661

tail_type_c:
662
663
| single_spec spec arrow_type_v { $3, spec_union $1 $2 }
| COLON simple_type_c           { $2 }
664
665

simple_type_c:
666
667
668
| ty spec { PTpure $1, $2 }

(* Function definitions *)
669

670
rec_defn:
671
| top_ghost labels(lident_rich) binders cast? spec EQUAL spec seq_expr
672
    { $2, $1, ($3, $4, $8, spec_union $5 $7) }
673

674
fun_defn:
675
| binders cast? spec EQUAL spec seq_expr { ($1, $2, $6, spec_union $3 $5) }
676

677
fun_expr:
678
679
| FUN binders spec ARROW spec seq_expr { ($2, None, $6, spec_union $3 $5) }

680
681
682
683
684
685
686
687
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
688

689
expr: e = mk_expr(expr_) { e }
690
691
692

expr_:
| expr_arg_
693
694
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
695
| NOT expr %prec prec_prefix_op
696
    { Enot $2 }
697
| prefix_op expr %prec prec_prefix_op
698
699
700
701
702
703
704
705
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = lazy_op ; r = expr
    { Elazy (l,o,r) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
706
| IF seq_expr THEN expr ELSE expr
707
    { Eif ($2, $4, $6) }
708
| IF seq_expr THEN expr %prec prec_no_else
709
710
711
712
713
714
715
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
716
| LET top_ghost pattern EQUAL seq_expr IN seq_expr
717
    { match $3.pat_desc with
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
      | Pvar id -> Elet (id, $2, $5, $7)
      | Pwild -> Elet (id_anonymous $3.pat_loc, $2, $5, $7)
      | Ptuple [] -> Elet (id_anonymous $3.pat_loc, $2,
          { $5 with expr_desc = Ecast ($5, PTtuple []) }, $7)
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $3.pat_loc in
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | _ ->
          let e = match $2 with
            | Glemma -> Loc.errorm ~loc:($3.pat_loc)
                "`let lemma' cannot be used with complex patterns"
            | Gghost -> { $5 with expr_desc = Eghost $5 }
            | Gnone -> $5 in
          Ematch (e, [$3, $7]) }
| LET top_ghost labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($3, $2, $5, $7) }
| LET top_ghost labels(lident) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
| LET top_ghost labels(lident_op_id) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
740
| LET REC with_list1(rec_defn) IN seq_expr
741
    { Erec ($3, $5) }
742
| fun_expr
743
744
745
746
747
748
749
    { Elam $1 }
| VAL top_ghost labels(lident_rich) mk_expr(val_expr) IN seq_expr
    { Elet ($3, $2, $4, $6) }
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
750
| quote_uident COLON seq_expr
751
    { Emark ($1, $3) }
752
| LOOP loop_annotation seq_expr END
753
    { Eloop ($2, $3) }
754
| WHILE seq_expr DO loop_annotation seq_expr DONE
755
756
757
    { Ewhile ($2, $4, $5) }
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
758
| ABSURD
759
    { Eabsurd }
760
| RAISE uqualid
761
    { Eraise ($2, None) }
762
| RAISE LEFTPAR uqualid seq_expr RIGHTPAR
763
764
765
    { Eraise ($3, Some $4) }
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
766
| ANY simple_type_c
767
    { Eany $2 }
768
| GHOST expr
769
    { Eghost $2 }
770
| ABSTRACT spec seq_expr END
771
772
773
    { Eabstract($3, $2) }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
774
| label expr %prec prec_named
775
776
777
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
778

779
780
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
781
782

expr_arg_:
783
784
785
786
787
788
789
790
791
792
793
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
794
795

expr_sub:
796
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
797
798
799
800
801
802
803
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
804
| expr_arg LEFTSQ expr RIGHTSQ
805
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
806
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
807
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
808
809
810
811
812
813
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
814

815
816
817
818
819
820
821
loop_annotation:
| (* epsilon *)
    { { loop_invariant = []; loop_variant = [] } }
| invariant loop_annotation
    { let a = $2 in { a with loop_invariant = $1 :: a.loop_invariant } }
| variant loop_annotation
    { let a = $2 in { a with loop_variant = variant_union $1 a.loop_variant } }
822

823
824
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
825

826
827
val_expr:
| tail_type_c { Eany $1 }
828

829
830
831
%inline lazy_op:
| AMPAMP  { LazyAnd }
| BARBAR  { LazyOr }
832
833

assertion_kind:
834
835
836
| ASSERT  { Aassert }
| ASSUME  { Aassume }
| CHECK   { Acheck }
837
838

for_direction:
839
840
| TO      { To }
| DOWNTO  { Downto }
841

842
(* Specification *)
843

844
spec:
845
| (* epsilon *)     { empty_spec }
846
| single_spec spec  { spec_union $1 $2 }
847