blocking_semantics5_TypingAndSemantics_type_inversion_1.v 14.3 KB
Newer Older
MARCHE Claude's avatar
MARCHE Claude committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require int.Int.

(* Why3 assumption *)
Inductive datatype  :=
  | TYunit : datatype 
  | TYint : datatype 
  | TYbool : datatype .
Axiom datatype_WhyType : WhyType datatype.
Existing Instance datatype_WhyType.

(* Why3 assumption *)
Inductive value  :=
  | Vvoid : value 
  | Vint : Z -> value 
  | Vbool : bool -> value .
Axiom value_WhyType : WhyType value.
Existing Instance value_WhyType.

(* Why3 assumption *)
Inductive operator  :=
  | Oplus : operator 
  | Ominus : operator 
  | Omult : operator 
  | Ole : operator .
Axiom operator_WhyType : WhyType operator.
Existing Instance operator_WhyType.

Axiom mident : Type.
Parameter mident_WhyType : WhyType mident.
Existing Instance mident_WhyType.

Axiom mident_decide : forall (m1:mident) (m2:mident), (m1 = m2) \/
  ~ (m1 = m2).

Axiom ident : Type.
Parameter ident_WhyType : WhyType ident.
Existing Instance ident_WhyType.

Axiom ident_decide : forall (m1:ident) (m2:ident), (m1 = m2) \/ ~ (m1 = m2).

(* Why3 assumption *)
Inductive term  :=
  | Tvalue : value -> term 
  | Tvar : ident -> term 
  | Tderef : mident -> term 
  | Tbin : term -> operator -> term -> term .
Axiom term_WhyType : WhyType term.
Existing Instance term_WhyType.

(* Why3 assumption *)
Inductive fmla  :=
  | Fterm : term -> fmla 
  | Fand : fmla -> fmla -> fmla 
  | Fnot : fmla -> fmla 
  | Fimplies : fmla -> fmla -> fmla 
  | Flet : ident -> term -> fmla -> fmla 
  | Fforall : ident -> datatype -> fmla -> fmla .
Axiom fmla_WhyType : WhyType fmla.
Existing Instance fmla_WhyType.

(* Why3 assumption *)
Inductive stmt  :=
  | Sskip : stmt 
  | Sassign : mident -> term -> stmt 
  | Sseq : stmt -> stmt -> stmt 
  | Sif : term -> stmt -> stmt -> stmt 
  | Sassert : fmla -> stmt 
  | Swhile : term -> fmla -> stmt -> stmt .
Axiom stmt_WhyType : WhyType stmt.
Existing Instance stmt_WhyType.

Axiom decide_is_skip : forall (s:stmt), (s = Sskip) \/ ~ (s = Sskip).

Axiom map : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, Type.
Parameter map_WhyType : forall (a:Type) {a_WT:WhyType a}
  (b:Type) {b_WT:WhyType b}, WhyType (map a b).
Existing Instance map_WhyType.

Parameter get: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b.

Parameter set: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b -> (map a b).

Axiom Select_eq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) ->
  ((get (set m a1 b1) a2) = b1).

Axiom Select_neq : forall {a:Type} {a_WT:WhyType a}
  {b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a),
  forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)).

Parameter const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  b -> (map a b).

Axiom Const : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1).

(* Why3 assumption *)
Inductive list (a:Type) {a_WT:WhyType a} :=
  | Nil : list a
  | Cons : a -> (list a) -> list a.
Axiom list_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (list a).
Existing Instance list_WhyType.
Implicit Arguments Nil [[a] [a_WT]].
Implicit Arguments Cons [[a] [a_WT]].

(* Why3 assumption *)
Definition env  := (map mident value).

(* Why3 assumption *)
Definition stack  := (list (ident* value)%type).

Parameter get_stack: ident -> (list (ident* value)%type) -> value.

Axiom get_stack_def : forall (i:ident) (pi:(list (ident* value)%type)),
  match pi with
  | Nil => ((get_stack i pi) = Vvoid)
  | (Cons (x, v) r) => ((x = i) -> ((get_stack i pi) = v)) /\ ((~ (x = i)) ->
      ((get_stack i pi) = (get_stack i r)))
  end.

Axiom get_stack_eq : forall (x:ident) (v:value) (r:(list (ident*
  value)%type)), ((get_stack x (Cons (x, v) r)) = v).

Axiom get_stack_neq : forall (x:ident) (i:ident) (v:value) (r:(list (ident*
  value)%type)), (~ (x = i)) -> ((get_stack i (Cons (x, v) r)) = (get_stack i
  r)).

Parameter eval_bin: value -> operator -> value -> value.

Axiom eval_bin_def : forall (x:value) (op:operator) (y:value), match (x,
  y) with
  | ((Vint x1), (Vint y1)) =>
      match op with
      | Oplus => ((eval_bin x op y) = (Vint (x1 + y1)%Z))
      | Ominus => ((eval_bin x op y) = (Vint (x1 - y1)%Z))
      | Omult => ((eval_bin x op y) = (Vint (x1 * y1)%Z))
      | Ole => ((x1 <= y1)%Z -> ((eval_bin x op y) = (Vbool true))) /\
          ((~ (x1 <= y1)%Z) -> ((eval_bin x op y) = (Vbool false)))
      end
  | (_, _) => ((eval_bin x op y) = Vvoid)
  end.

(* Why3 assumption *)
Fixpoint eval_term(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (t:term) {struct t}: value :=
  match t with
  | (Tvalue v) => v
  | (Tvar id) => (get_stack id pi)
  | (Tderef id) => (get sigma id)
  | (Tbin t1 op t2) => (eval_bin (eval_term sigma pi t1) op (eval_term sigma
      pi t2))
  end.

(* Why3 assumption *)
Fixpoint eval_fmla(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm t) => ((eval_term sigma pi t) = (Vbool true))
  | (Fand f1 f2) => (eval_fmla sigma pi f1) /\ (eval_fmla sigma pi f2)
  | (Fnot f1) => ~ (eval_fmla sigma pi f1)
  | (Fimplies f1 f2) => (eval_fmla sigma pi f1) -> (eval_fmla sigma pi f2)
  | (Flet x t f1) => (eval_fmla sigma (Cons (x, (eval_term sigma pi t)) pi)
      f1)
  | (Fforall x TYint f1) => forall (n:Z), (eval_fmla sigma (Cons (x,
      (Vint n)) pi) f1)
  | (Fforall x TYbool f1) => forall (b:bool), (eval_fmla sigma (Cons (x,
      (Vbool b)) pi) f1)
  | (Fforall x TYunit f1) => (eval_fmla sigma (Cons (x, Vvoid) pi) f1)
  end.

(* Why3 assumption *)
Definition valid_fmla(p:fmla): Prop := forall (sigma:(map mident value))
  (pi:(list (ident* value)%type)), (eval_fmla sigma pi p).

(* Why3 assumption *)
Inductive one_step : (map mident value) -> (list (ident* value)%type) -> stmt
  -> (map mident value) -> (list (ident* value)%type) -> stmt -> Prop :=
  | one_step_assign : forall (sigma:(map mident value)) (sigma':(map mident
      value)) (pi:(list (ident* value)%type)) (x:mident) (t:term),
      (sigma' = (set sigma x (eval_term sigma pi t))) -> (one_step sigma pi
      (Sassign x t) sigma' pi Sskip)
  | one_step_seq_noskip : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (s1:stmt) (s1':stmt) (s2:stmt), (one_step sigma pi s1
      sigma' pi' s1') -> (one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1'
      s2))
  | one_step_seq_skip : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (s:stmt), (one_step sigma pi (Sseq Sskip s) sigma pi s)
  | one_step_if_true : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (t:term) (s1:stmt) (s2:stmt), ((eval_term sigma pi
      t) = (Vbool true)) -> (one_step sigma pi (Sif t s1 s2) sigma pi s1)
  | one_step_if_false : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (t:term) (s1:stmt) (s2:stmt), ((eval_term sigma pi
      t) = (Vbool false)) -> (one_step sigma pi (Sif t s1 s2) sigma pi s2)
  | one_step_assert : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (f:fmla), (eval_fmla sigma pi f) -> (one_step sigma pi
      (Sassert f) sigma pi Sskip)
  | one_step_while_true : forall (sigma:(map mident value)) (pi:(list (ident*
205 206 207
      value)%type)) (cond:term) (inv:fmla) (body:stmt), ((eval_fmla sigma pi
      inv) /\ ((eval_term sigma pi cond) = (Vbool true))) -> (one_step sigma
      pi (Swhile cond inv body) sigma pi (Sseq body (Swhile cond inv body)))
MARCHE Claude's avatar
MARCHE Claude committed
208 209
  | one_step_while_false : forall (sigma:(map mident value)) (pi:(list
      (ident* value)%type)) (cond:term) (inv:fmla) (body:stmt),
210 211 212
      ((eval_fmla sigma pi inv) /\ ((eval_term sigma pi
      cond) = (Vbool false))) -> (one_step sigma pi (Swhile cond inv body)
      sigma pi Sskip).
MARCHE Claude's avatar
MARCHE Claude committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

(* Why3 assumption *)
Inductive many_steps : (map mident value) -> (list (ident* value)%type)
  -> stmt -> (map mident value) -> (list (ident* value)%type) -> stmt
  -> Z -> Prop :=
  | many_steps_refl : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (s:stmt), (many_steps sigma pi s sigma pi s 0%Z)
  | many_steps_trans : forall (sigma1:(map mident value)) (sigma2:(map mident
      value)) (sigma3:(map mident value)) (pi1:(list (ident* value)%type))
      (pi2:(list (ident* value)%type)) (pi3:(list (ident* value)%type))
      (s1:stmt) (s2:stmt) (s3:stmt) (n:Z), (one_step sigma1 pi1 s1 sigma2 pi2
      s2) -> ((many_steps sigma2 pi2 s2 sigma3 pi3 s3 n) ->
      (many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n + 1%Z)%Z)).

Axiom steps_non_neg : forall (sigma1:(map mident value)) (sigma2:(map mident
  value)) (pi1:(list (ident* value)%type)) (pi2:(list (ident* value)%type))
  (s1:stmt) (s2:stmt) (n:Z), (many_steps sigma1 pi1 s1 sigma2 pi2 s2 n) ->
  (0%Z <= n)%Z.

(* Why3 assumption *)
233
Definition reductible(sigma:(map mident value)) (pi:(list (ident*
MARCHE Claude's avatar
MARCHE Claude committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  value)%type)) (s:stmt): Prop := exists sigma':(map mident value),
  exists pi':(list (ident* value)%type), exists s':stmt, (one_step sigma pi s
  sigma' pi' s').

(* Why3 assumption *)
Definition type_value(v:value): datatype :=
  match v with
  | Vvoid => TYunit
  | (Vint int) => TYint
  | (Vbool bool1) => TYbool
  end.

(* Why3 assumption *)
Inductive type_operator : operator -> datatype -> datatype
  -> datatype -> Prop :=
  | Type_plus : (type_operator Oplus TYint TYint TYint)
  | Type_minus : (type_operator Ominus TYint TYint TYint)
  | Type_mult : (type_operator Omult TYint TYint TYint)
  | Type_le : (type_operator Ole TYint TYint TYbool).

(* Why3 assumption *)
Definition type_stack  := (list (ident* datatype)%type).

Parameter get_vartype: ident -> (list (ident* datatype)%type) -> datatype.

Axiom get_vartype_def : forall (i:ident) (pi:(list (ident* datatype)%type)),
  match pi with
  | Nil => ((get_vartype i pi) = TYunit)
  | (Cons (x, ty) r) => ((x = i) -> ((get_vartype i pi) = ty)) /\
      ((~ (x = i)) -> ((get_vartype i pi) = (get_vartype i r)))
  end.

(* Why3 assumption *)
Definition type_env  := (map mident datatype).

(* Why3 assumption *)
Inductive type_term : (map mident datatype) -> (list (ident* datatype)%type)
  -> term -> datatype -> Prop :=
  | Type_value : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:value), (type_term sigma pi (Tvalue v)
      (type_value v))
  | Type_var : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:ident) (ty:datatype), ((get_vartype v pi) = ty) ->
      (type_term sigma pi (Tvar v) ty)
  | Type_deref : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (v:mident) (ty:datatype), ((get sigma v) = ty) ->
      (type_term sigma pi (Tderef v) ty)
  | Type_bin : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (t1:term) (t2:term) (op:operator) (ty1:datatype)
283 284 285
      (ty2:datatype) (ty:datatype), ((type_term sigma pi t1 ty1) /\
      ((type_term sigma pi t2 ty2) /\ (type_operator op ty1 ty2 ty))) ->
      (type_term sigma pi (Tbin t1 op t2) ty).
MARCHE Claude's avatar
MARCHE Claude committed
286 287 288 289 290 291 292 293

(* Why3 assumption *)
Inductive type_fmla : (map mident datatype) -> (list (ident* datatype)%type)
  -> fmla -> Prop :=
  | Type_term : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (t:term), (type_term sigma pi t TYbool) ->
      (type_fmla sigma pi (Fterm t))
  | Type_conj : forall (sigma:(map mident datatype)) (pi:(list (ident*
294 295
      datatype)%type)) (f1:fmla) (f2:fmla), ((type_fmla sigma pi f1) /\
      (type_fmla sigma pi f2)) -> (type_fmla sigma pi (Fand f1 f2))
MARCHE Claude's avatar
MARCHE Claude committed
296 297 298 299 300 301 302 303 304 305
  | Type_neg : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (f:fmla), (type_fmla sigma pi f) -> (type_fmla sigma
      pi (Fnot f))
  | Type_implies : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (f1:fmla) (f2:fmla), (type_fmla sigma pi f1) ->
      ((type_fmla sigma pi f2) -> (type_fmla sigma pi (Fimplies f1 f2)))
  | Type_let : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (t:term) (f:fmla) (ty:datatype),
      (type_term sigma pi t ty) -> ((type_fmla sigma (Cons (x, ty) pi) f) ->
      (type_fmla sigma pi (Flet x t f)))
306 307 308
  | Type_forall : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:ident) (f:fmla) (ty:datatype), (type_fmla sigma
      (Cons (x, ty) pi) f) -> (type_fmla sigma pi (Fforall x ty f)).
MARCHE Claude's avatar
MARCHE Claude committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

(* Why3 assumption *)
Inductive type_stmt : (map mident datatype) -> (list (ident* datatype)%type)
  -> stmt -> Prop :=
  | Type_skip : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)), (type_stmt sigma pi Sskip)
  | Type_seq : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (s1:stmt) (s2:stmt), (type_stmt sigma pi s1) ->
      ((type_stmt sigma pi s2) -> (type_stmt sigma pi (Sseq s1 s2)))
  | Type_assigns : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (x:mident) (t:term) (ty:datatype), ((get sigma
      x) = ty) -> ((type_term sigma pi t ty) -> (type_stmt sigma pi
      (Sassign x t)))
  | Type_if : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (t:term) (s1:stmt) (s2:stmt), (type_term sigma pi t
      TYbool) -> ((type_stmt sigma pi s1) -> ((type_stmt sigma pi s2) ->
      (type_stmt sigma pi (Sif t s1 s2))))
  | Type_assert : forall (sigma:(map mident datatype)) (pi:(list (ident*
      datatype)%type)) (p:fmla), (type_fmla sigma pi p) -> (type_stmt sigma
      pi (Sassert p))
  | Type_while : forall (sigma:(map mident datatype)) (pi:(list (ident*
330 331 332 333 334 335 336 337 338 339
      datatype)%type)) (cond:term) (body:stmt) (inv:fmla), (type_fmla sigma
      pi inv) -> ((type_term sigma pi cond TYbool) -> ((type_stmt sigma pi
      body) -> (type_stmt sigma pi (Swhile cond inv body)))).

(* Why3 assumption *)
Definition compatible_env(sigma:(map mident value)) (sigmat:(map mident
  datatype)) (pi:(list (ident* value)%type)) (pit:(list (ident*
  datatype)%type)): Prop := (forall (id:mident), ((type_value (get sigma
  id)) = (get sigmat id))) /\ forall (id:ident), ((type_value (get_stack id
  pi)) = (get_vartype id pit)).
MARCHE Claude's avatar
MARCHE Claude committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353

Require Import Why3.

(* Why3 goal *)
Theorem type_inversion : forall (v:value),
  match (type_value v) with
  | TYbool => exists b:bool, (v = (Vbool b))
  | TYint => exists n:Z, (v = (Vint n))
  | TYunit => (v = Vvoid)
  end.
destruct v; why3 "alt-ergo" timelimit 5.
Qed.