mlw_wp.ml 40.9 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3 4 5 6 7 8 9 10
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
(*  Copyright 2010-2012   --   INRIA - CNRS - Paris-Sud University  *)
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(*                                                                  *)
(********************************************************************)
Andrei Paskevich's avatar
Andrei Paskevich committed
11

12
open Util
Andrei Paskevich's avatar
Andrei Paskevich committed
13 14 15
open Ident
open Ty
open Term
16
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
17 18 19 20 21
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

22
let debug = Debug.register_info_flag "whyml_wp"
Andrei Paskevich's avatar
Andrei Paskevich committed
23
  ~desc:"Print@ details@ of@ verification@ conditions@ generation."
24

25
let no_track = Debug.register_flag "wp_no_track"
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27
  ~desc:"Do@ not@ remove@ redundant@ type@ invariant@ conditions@ from@ VCs."

28
let no_eval = Debug.register_flag "wp_no_eval"
Andrei Paskevich's avatar
Andrei Paskevich committed
29
  ~desc:"Do@ not@ simplify@ pattern@ matching@ on@ record@ datatypes@ in@ VCs."
30

31
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
32 33 34 35

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

36 37 38
let vtv_mark = vty_value (ity_pur ts_mark [])

let fresh_mark () = create_vsymbol (id_fresh "'mark") ty_mark
39

Andrei Paskevich's avatar
Andrei Paskevich committed
40 41 42 43 44 45 46 47
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

48 49
let th_mark_at =
  let uc = create_theory (id_fresh "WP builtins: at") in
Andrei Paskevich's avatar
Andrei Paskevich committed
50 51
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
52 53 54 55 56
  close_theory uc

let th_mark_old =
  let uc = create_theory (id_fresh "WP builtins: old") in
  let uc = use_export uc th_mark_at in
Andrei Paskevich's avatar
Andrei Paskevich committed
57 58 59
  let uc = add_param_decl uc fs_old in
  close_theory uc

60
let fs_now = create_lsymbol (id_fresh "%now") [] (Some ty_mark)
Andrei Paskevich's avatar
Andrei Paskevich committed
61 62
let t_now = fs_app fs_now [] ty_mark
let e_now = e_lapp fs_now [] (ity_pur ts_mark [])
Andrei Paskevich's avatar
Andrei Paskevich committed
63

64 65
(* [vs_old] appears in the postconditions given to the core API,
   which expects every vsymbol to be a pure part of a pvsymbol *)
66
let pv_old = create_pvsymbol (id_fresh "%old") vtv_mark
67 68
let vs_old = pv_old.pv_vs
let t_old  = t_var vs_old
69

Andrei Paskevich's avatar
Andrei Paskevich committed
70 71
let t_at_old t = t_app fs_at [t; t_old] t.t_ty

72 73
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
74

75
let mk_t_if f = t_if f t_bool_true t_bool_false
76
let to_term t = if t.t_ty = None then mk_t_if t else t
77

78 79
(* any vs in post/xpost is either a pvsymbol or a fresh mark *)
let vtv_of_vs vs =
80
  try (restore_pv vs).pv_vtv with Not_found -> vtv_mark
81 82 83

(* replace every occurrence of [old(t)] with [at(t,'old)] *)
let rec remove_old f = match f.t_node with
Andrei Paskevich's avatar
Andrei Paskevich committed
84
  | Tapp (ls,[t]) when ls_equal ls fs_old -> t_at_old (remove_old t)
85 86 87 88 89 90 91 92
  | _ -> t_map remove_old f

(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t; { t_node = Tapp (fs,[]) }])
    when ls_equal ls fs_at && ls_equal fs fs_now -> remove_at t
  | _ -> t_map remove_at f

93 94 95 96
(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
Andrei Paskevich's avatar
Andrei Paskevich committed
97 98
let erase_mark lab t = t_subst_single lab t_now t

Andrei Paskevich's avatar
Andrei Paskevich committed
99 100
(* retreat to the point of the current postcondition's ['old] *)
let backstep fn q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
101 102 103
  let lab = fresh_mark () in
  let f = fn (old_mark lab q) (Mexn.map (old_mark lab) xq) in
  erase_mark lab f
104

105
(** WP utilities *)
106 107 108 109 110 111 112

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
113
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
114

115 116 117 118 119
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

Andrei Paskevich's avatar
Andrei Paskevich committed
120
let expl_pre       = Ident.create_label "expl:precondition"
121
let expl_post      = Ident.create_label "expl:postcondition"
Andrei Paskevich's avatar
Andrei Paskevich committed
122
let expl_xpost     = Ident.create_label "expl:exceptional postcondition"
123
let expl_assume    = Ident.create_label "expl:assumption"
Andrei Paskevich's avatar
Andrei Paskevich committed
124 125
let expl_assert    = Ident.create_label "expl:assertion"
let expl_check     = Ident.create_label "expl:check"
126
let expl_type_inv  = Ident.create_label "expl:type invariant"
Andrei Paskevich's avatar
Andrei Paskevich committed
127 128
let expl_loop_init = Ident.create_label "expl:loop invariant init"
let expl_loop_keep = Ident.create_label "expl:loop invariant preservation"
129 130
let expl_loopvar   = Ident.create_label "expl:loop variant decrease"
let expl_variant   = Ident.create_label "expl:variant decrease"
131

132 133 134 135 136
let rec wp_expl l f = match f.t_node with
  | _ when Slab.mem Split_goal.stop_split f.t_label -> t_label_add l f
  | Tbinop (Tand,f1,f2) -> t_label_copy f (t_and (wp_expl l f1) (wp_expl l f2))
  | Teps _ -> t_label_add l f (* post-condition, push down later *)
  | _ -> f
137

138
let wp_and ~sym f1 f2 =
139 140
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

141
let wp_ands ~sym fl =
142 143
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

144
let wp_implies f1 f2 = t_implies_simp f1 f2
145

146 147
let wp_let v t f = t_let_close_simp v t f

148 149
let wp_forall vl f = t_forall_close_simp vl [] f

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
let wp_forall_post v p f =
  (* we optimize for the case when a postcondition
     is of the form (... /\ result = t /\ ...) *)
  let rec down p = match p.t_node with
    | Tbinop (Tand,l,r) ->
        begin match down l with
          | None, _ ->
              let t, r = down r in
              t, t_label_copy p (t_and_simp l r)
          | t, l ->
              t, t_label_copy p (t_and_simp l r)
        end
    | Tapp (ps,[{t_node = Tvar u};t])
      when ls_equal ps ps_equ && vs_equal u v && not (Mvs.mem v t.t_vars) ->
        Some t, t_true
    | _ ->
        None, p
  in
  if ty_equal v.vs_ty ty_unit then
    t_subst_single v t_void (wp_implies p f)
  else match down p with
    | Some t, p -> wp_let v t (wp_implies p f)
    | _ -> wp_forall [v] (wp_implies p f)
173

Andrei Paskevich's avatar
Andrei Paskevich committed
174 175
(* regs_of_reads, and therefore regs_of_effect, only take into account
   reads in program expressions and ignore the variables in specification *)
176
(* dead code
177
let regs_of_reads  eff = Sreg.union eff.eff_reads eff.eff_ghostr
178
*)
179
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
180
(* dead code
181
let regs_of_effect eff = Sreg.union (regs_of_reads eff) (regs_of_writes eff)
182
*)
Andrei Paskevich's avatar
Andrei Paskevich committed
183
let exns_of_raises eff = Sexn.union eff.eff_raises eff.eff_ghostx
184

185 186
let open_post q =
  let v, f = open_post q in
187
  v, Slab.fold wp_expl q.t_label f
188

189 190 191 192 193 194 195 196 197 198 199
let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

let create_unit_post =
  let v = create_vsymbol (id_fresh "void") ty_unit in
  fun q -> create_post v q

let vs_result e =
  create_vsymbol (id_fresh ?loc:e.e_loc "result") (ty_of_vty e.e_vty)

200 201 202 203 204 205
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
Andrei Paskevich's avatar
Andrei Paskevich committed
206 207 208 209 210
  ps_int_le  : Term.lsymbol;
  ps_int_ge  : Term.lsymbol;
  ps_int_lt  : Term.lsymbol;
  ps_int_gt  : Term.lsymbol;
  fs_int_pl  : Term.lsymbol;
211
  letrec_var : term list Mint.t;
212
}
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
let decrease_alg ?loc env old_t t =
  let oty = t_type old_t in
  let nty = t_type t in
  let quit () =
    Loc.errorm ?loc "no default order for %a" Pretty.print_term t in
  let ts = match oty with { ty_node = Tyapp (ts,_) } -> ts | _ -> quit () in
  let csl = Decl.find_constructors env.pure_known ts in
  if csl = [] then quit ();
  let sbs = ty_match Mtv.empty (ty_app ts (List.map ty_var ts.ts_args)) oty in
  let add_arg acc fty =
    let fty = ty_inst sbs fty in
    if ty_equal fty nty then
      let vs = create_vsymbol (id_fresh "f") nty in
      t_or_simp acc (t_equ (t_var vs) t), pat_var vs
    else acc, pat_wild fty in
  let add_cs (cs,_) =
    let f, pl = Util.map_fold_left add_arg t_false cs.ls_args in
    t_close_branch (pat_app cs pl oty) f in
  t_case old_t (List.map add_cs csl)

let decrease_rel ?loc env old_t t = function
  | Some ls -> ps_app ls [t; old_t]
  | None when ty_equal (t_type t) ty_int ->
      t_and
        (ps_app env.ps_int_le [t_int_const "0"; old_t])
        (ps_app env.ps_int_lt [t; old_t])
  | None -> decrease_alg ?loc env old_t t

242
let decrease loc lab env olds varl =
243
  let rec decr pr olds varl = match olds, varl with
244 245 246 247 248 249 250 251 252 253
    | [], [] -> (* empty variant *)
        t_true
    | [old_t], [t, rel] ->
        t_and_simp pr (decrease_rel ?loc env old_t t rel)
    | old_t::_, (t,_)::_ when not (oty_equal old_t.t_ty t.t_ty) ->
        Loc.errorm ?loc "cannot use lexicographic ordering"
    | old_t::olds, (t,rel)::varl ->
        let dt = t_and_simp pr (decrease_rel ?loc env old_t t rel) in
        let pr = t_and_simp pr (t_equ old_t t) in
        t_or_simp dt (decr pr olds varl)
254
    | _ -> assert false
Andrei Paskevich's avatar
Andrei Paskevich committed
255
  in
256 257 258 259
  t_label ?loc lab (decr t_true olds varl)

let expl_variant = Slab.add Split_goal.stop_split (Slab.singleton expl_variant)
let expl_loopvar = Slab.add Split_goal.stop_split (Slab.singleton expl_loopvar)
Andrei Paskevich's avatar
Andrei Paskevich committed
260

261 262
(** Reconstruct pure values after writes *)

263 264 265 266 267
let analyze_var fn_down fn_join lkm km vs ity =
  let branch (cs,vtvl) =
    let mk_var vtv = create_vsymbol (id_fresh "y") (ty_of_ity vtv.vtv_ity) in
    let vars = List.map mk_var vtvl in
    let t = fn_join cs (List.map2 fn_down vars vtvl) vs.vs_ty in
268 269
    let pat = pat_app cs (List.map pat_var vars) vs.vs_ty in
    t_close_branch pat t in
270
  t_case (t_var vs) (List.map branch (Mlw_decl.inst_constructors lkm km ity))
271

272
let update_var env mreg vs =
273
  let rec update vs { vtv_ity = ity; vtv_mut = mut } =
274 275 276 277 278
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
    let vs = Util.option_apply vs get_vs mut in
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
279
    if ity_pure ity || not (Mreg.exists check_reg mreg) then t_var vs
280
    else analyze_var update fs_app env.pure_known env.prog_known vs ity
281
  in
282
  update vs (vtv_of_vs vs)
283

Andrei Paskevich's avatar
Andrei Paskevich committed
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
(* substitute the updated values in the "contemporary" variables *)
let rec subst_at_now now m t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs m) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old -> assert false
  | Tapp (ls, [_; mark]) when ls_equal ls fs_at ->
      let now = match mark.t_node with
        | Tvar vs when vs_equal vs vs_old -> assert false
        | Tapp (ls,[]) when ls_equal ls fs_now -> true
        | _ -> false in
      t_map (subst_at_now now m) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let m = Mvs.set_inter m t.t_vars in
      if Mvs.is_empty m then t else
      t_map (subst_at_now now m) t
  | _ ->
      t_map (subst_at_now now m) t

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
(* quantify over all references in eff
   eff : effect
   f   : formula

   let eff = { rho1, ..., rhon }
   we collect in vars all variables involving these regions
   let vars = { v1, ..., vm }

     forall r1:ty(rho1). ... forall rn:ty(rhon).
     let v'1 = update v1 r1...rn in
     ...
     let v'm = update vm r1...rn in
     f[vi <- v'i]
*)

let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
320 321
let model3_lab = Slab.singleton (create_label "model:cond")

322 323
let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

324 325
let quantify env regs f =
  (* mreg : updated region -> vs *)
326
  let get_var reg () =
327
    let test vs _ id = match vtv_of_vs vs with
328 329 330 331 332 333
      | { vtv_ity = { ity_node = Ityapp (_,_,[r]) }}
      | { vtv_mut = Some r } when reg_equal r reg -> vs.vs_name
      | _ -> id in
    let id = Mvs.fold test f.t_vars reg.reg_name in
    mk_var id model1_lab (ty_of_ity reg.reg_ity)
  in
334
  let mreg = Mreg.mapi get_var regs in
335
  (* update all program variables involving these regions *)
336
  let update_var vs _ = match update_var env mreg vs with
337 338 339 340 341 342 343
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
  let vars = Mvs.mapi_filter update_var f.t_vars in
  (* vv' : old vs -> new vs *)
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
  (* quantify *)
344
  let update v t f = wp_let (Mvs.find v vv') t f in
Andrei Paskevich's avatar
Andrei Paskevich committed
345
  let f = Mvs.fold update vars (subst_at_now true vv' f) in
346
  wp_forall (List.rev (Mreg.values mreg)) f
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
(** Invariants *)

let get_invariant km t =
  let ty = t_type t in
  let ts = match ty.ty_node with
    | Tyapp (ts,_) -> ts
    | _ -> assert false in
  let rec find_td = function
    | (its,_,inv) :: _ when ts_equal ts its.its_pure -> inv
    | _ :: tdl -> find_td tdl
    | [] -> assert false in
  let pd = Mid.find ts.ts_name km in
  let inv = match pd.Mlw_decl.pd_node with
    | Mlw_decl.PDdata tdl -> find_td tdl
    | _ -> assert false in
  let sbs = Ty.ty_match Mtv.empty (t_type inv) ty in
  let u, p = open_post (t_ty_subst sbs Mvs.empty inv) in
365
  wp_expl expl_type_inv (t_subst_single u t p)
366 367 368 369 370

let ps_inv = Term.create_psymbol (id_fresh "inv")
  [ty_var (create_tvsymbol (id_fresh "a"))]

let full_invariant lkm km vs ity =
371
  let rec update vs { vtv_ity = ity } =
372 373 374 375 376 377 378 379 380 381
    if not (ity_inv ity) then t_true else
    (* what is our current invariant? *)
    let f = match ity.ity_node with
      | Ityapp (its,_,_) when its.its_inv ->
          if Debug.test_flag no_track
          then get_invariant km (t_var vs)
          else ps_app ps_inv [t_var vs]
      | _ -> t_true in
    (* what are our sub-invariants? *)
    let join _ fl _ = wp_ands ~sym:true fl in
382
    let g = analyze_var update join lkm km vs ity in
383 384 385
    (* put everything together *)
    wp_and ~sym:true f g
  in
386
  update vs (vty_value ity)
387 388

(** Value tracking *)
389 390 391

type point = int
type value = point list Mls.t (* constructor -> field list *)
392

393
type state = {
394 395 396 397
  st_km   : Mlw_decl.known_map;
  st_lkm  : Decl.known_map;
  st_mem  : (point, value) Hashtbl.t;
  st_next : point ref;
398 399
}

400
(* dead code
401 402 403
type names = point Mvs.t  (* variable -> point *)
type condition = lsymbol Mint.t (* point -> constructor *)
type lesson = condition list Mint.t (* point -> conditions for invariant *)
404
*)
405 406 407 408 409 410

let empty_state lkm km = {
  st_km   = km;
  st_lkm  = lkm;
  st_mem  = Hashtbl.create 5;
  st_next = ref 0;
411 412 413
}

let next_point state =
414
  let res = !(state.st_next) in incr state.st_next; res
415

416
let make_value state ty =
417 418 419
  let get_p _ = next_point state in
  let new_cs cs = List.map get_p cs.ls_args in
  let add_cs m (cs,_) = Mls.add cs (new_cs cs) m in
420
  let csl = match ty.ty_node with
421 422
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
    | _ -> [] in
423 424
  List.fold_left add_cs Mls.empty csl

425
let match_point state ty p =
426
  try Hashtbl.find state.st_mem p with Not_found ->
427
  let value = make_value state ty in
428 429
  if not (Mls.is_empty value) then
    Hashtbl.replace state.st_mem p value;
430 431
  value

432 433 434 435 436 437 438 439 440 441 442 443 444 445
let rec open_pattern state names value p pat = match pat.pat_node with
  | Pwild -> names
  | Pvar vs -> Mvs.add vs p names
  | Papp (cs,patl) ->
      let add_pat names p pat =
        let value = match_point state pat.pat_ty p in
        open_pattern state names value p pat in
      List.fold_left2 add_pat names (Mls.find cs value) patl
  | Por _ ->
      let add_vs vs s = Mvs.add vs (next_point state) s in
      Svs.fold add_vs pat.pat_vars names
  | Pas (pat,vs) ->
      open_pattern state (Mvs.add vs p names) value p pat

446 447 448 449
let rec point_of_term state names t = match t.t_node with
  | Tvar vs ->
      Mvs.find vs names
  | Tapp (ls, tl) ->
450
      begin match Mid.find ls.ls_name state.st_lkm with
451 452 453 454 455 456 457 458 459
        | { Decl.d_node = Decl.Ddata tdl } ->
            let is_cs (cs,_) = ls_equal ls cs in
            let is_cs (_,csl) = List.exists is_cs csl in
            if List.exists is_cs tdl
            then point_of_constructor state names ls tl
            else point_of_projection state names ls (List.hd tl)
        | _ -> next_point state
      end
  | Tlet (t1, bt) ->
460
      let p1 = point_of_term state names t1 in
461
      let v, t2 = t_open_bound bt in
462 463 464 465 466 467 468
      let names = Mvs.add v p1 names in
      point_of_term state names t2
  | Tcase (t1,[br]) ->
      let pat, t2 = t_open_branch br in
      let p1 = point_of_term state names t1 in
      let value = match_point state pat.pat_ty p1 in
      let names = open_pattern state names value p1 pat in
469
      point_of_term state names t2
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  | Tcase (t1,bl) ->
      (* we treat here the case of a value update: the value
         of each branch must be a distinct constructor *)
      let p = next_point state in
      let ty = of_option t.t_ty in
      let p1 = point_of_term state names t1 in
      let value = match_point state (of_option t1.t_ty) p1 in
      let branch acc br =
        let pat, t2 = t_open_branch br in
        let ls = match t2.t_node with
          | Tapp (ls,_) -> ls | _ -> raise Exit in
        let names = open_pattern state names value p1 pat in
        let p2 = point_of_term state names t2 in
        let v2 = match_point state ty p2 in
        Mls.add_new Exit ls (Mls.find_exn Exit ls v2) acc
      in
      begin try
        let value = List.fold_left branch Mls.empty bl in
        let value = Mls.set_union value (make_value state ty) in
489
        Hashtbl.replace state.st_mem p value
490 491 492
      with Exit -> () end;
      p
  | Tconst _ | Tif _ | Teps _ -> next_point state
493 494 495 496
  | Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> assert false

and point_of_constructor state names ls tl =
  let p = next_point state in
497 498 499
  let pl = List.map (point_of_term state names) tl in
  let value = make_value state (of_option ls.ls_value) in
  let value = Mls.add ls pl value in
500
  Hashtbl.replace state.st_mem p value;
501 502 503
  p

and point_of_projection state names ls t1 =
504 505
  let ty = of_option t1.t_ty in
  let csl = match ty.ty_node with
506
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
507 508 509
    | _ -> assert false in
  match csl with
    | [cs,pjl] ->
510
        let p1 = point_of_term state names t1 in
511
        let value = match_point state ty p1 in
512 513 514 515 516 517 518
        let rec find_p pjl pl = match pjl, pl with
          | Some pj::_, p::_ when ls_equal ls pj -> p
          | _::pjl, _::pl -> find_p pjl pl
          | _ -> assert false in
        find_p pjl (Mls.find cs value)
    | _ -> next_point state (* more than one, can't choose *)

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
let rec track_values state names lesson cond f = match f.t_node with
  | Tapp (ls, [t1]) when ls_equal ls ps_inv ->
      let p1 = point_of_term state names t1 in
      let condl = Mint.find_def [] p1 lesson in
      let contains c1 c2 = Mint.submap (fun _ -> ls_equal) c2 c1 in
      if List.exists (contains cond) condl then
        lesson, t_true
      else
        let good c = not (contains c cond) in
        let condl = List.filter good condl in
        let l = Mint.add p1 (cond::condl) lesson in
        l, get_invariant state.st_km t1
  | Tbinop (Timplies, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names l cond f2 in
      lesson, t_label_copy f (t_implies_simp f1 f2)
  | Tbinop (Tand, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let l, f2 = track_values state names l cond f2 in
      l, t_label_copy f (t_and_simp f1 f2)
  | Tif (fc, f1, f2) ->
      let _, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names lesson cond f2 in
      lesson, t_label_copy f (t_if_simp fc f1 f2)
  | Tcase (t1, bl) ->
      let p1 = point_of_term state names t1 in
      let value = match_point state (of_option t1.t_ty) p1 in
      let is_pat_var = function
        | { pat_node = Pvar _ } -> true | _ -> false in
      let branch l br =
        let pat, f1, cb = t_open_branch_cb br in
        let learn, cond = match bl, pat.pat_node with
          | [_], _ -> true, cond (* one branch, can learn *)
          | _, Papp (cs, pl) when List.for_all is_pat_var pl ->
              (try true, Mint.add_new Exit p1 cs cond (* can learn *)
              with Exit -> false, cond) (* contradiction, cannot learn *)
          | _, _ -> false, cond (* complex pattern, will not learn *)
        in
        let names = open_pattern state names value p1 pat in
        let m, f1 = track_values state names lesson cond f1 in
        let l = if learn then m else l in
        l, cb pat f1
      in
      let l, bl = Util.map_fold_left branch lesson bl in
      l, t_label_copy f (t_case t1 bl)
  | Tlet (t1, bf) ->
      let p1 = point_of_term state names t1 in
      let v, f1, cb = t_open_bound_cb bf in
      let names = Mvs.add v p1 names in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_let_simp t1 (cb v f1))
  | Tquant (Tforall, qf) ->
      let vl, trl, f1, cb = t_open_quant_cb qf in
      let add_vs s vs = Mvs.add vs (next_point state) s in
      let names = List.fold_left add_vs names vl in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_forall_simp (cb vl trl f1))
  | Tbinop ((Tor|Tiff),_,_) | Tquant (Texists,_)
  | Tapp _ | Tnot _ | Ttrue | Tfalse -> lesson, f
  | Tvar _ | Tconst _ | Teps _ -> assert false

let track_values lkm km f =
  let state = empty_state lkm km in
  let _, f = track_values state Mvs.empty Mint.empty Mint.empty f in
  f
584

585 586
(** Weakest preconditions *)

587
let rec wp_expr env e q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
588
  let f = wp_desc env e q xq in
589
  if Debug.test_flag debug then begin
590
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
591 592 593
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
594
  f
595

596
and wp_desc env e q xq = match e.e_node with
597 598 599
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
600 601 602
      (* NOTE: if you replace this t_subst by t_let or anything else,
         you must handle separately the case "let mark = 'now in ...",
         which requires 'now to be substituted for mark in q *)
603
      t_subst_single v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
604 605 606
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
607
      t_subst_single v t q
608 609 610
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
611 612 613 614 615 616 617
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2)
    when Util.option_eq Loc.equal v.pv_vs.vs_name.id_loc e1.e_loc ->
    (* we push the label down, past the implicitly inserted "let" *)
      let w = wp_expr env (e_label_copy e e2) q xq in
      let q = create_post v.pv_vs w in
      wp_expr env e1 q xq
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2) ->
618
      let w = wp_expr env e2 q xq in
619
      let q = create_post v.pv_vs w in
620
      wp_label e (wp_expr env e1 q xq)
621 622 623 624
  | Elet ({ let_sym = LetA _; let_expr = e1 }, e2) ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
625 626
  | Erec (fdl, e1) ->
      let fr = wp_rec_defn env fdl in
627 628 629
      let fe = wp_expr env e1 q xq in
      let fr = wp_ands ~sym:true fr in
      wp_label e (wp_and ~sym:true fr fe)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
  | Eif (e1, e2, e3) ->
      let res = vs_result e1 in
      let test = t_equ (t_var res) t_bool_true in
      let test = t_label ?loc:e1.e_loc model3_lab test in
      (* if both branches are pure, do not split *)
      let w =
        let get_term e = match e.e_node with
          | Elogic t -> to_term t
          | Evalue v -> t_var v.pv_vs
          | _ -> raise Exit in
        try
          let r2 = get_term e2 in
          let r3 = get_term e3 in
          let v, q = open_post q in
          t_subst_single v (t_if_simp test r2 r3) q
        with Exit ->
          let w2 = wp_expr env e2 q xq in
          let w3 = wp_expr env e3 q xq in
          t_if_simp test w2 w3
      in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
652 653 654 655 656 657 658 659 660 661 662
  (* optimization for the particular case let _ = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Pwild }}, e2]) ->
      let w = wp_expr env e2 q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
  (* optimization for the particular case let () = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Papp (cs,[]) }}, e2])
    when ls_equal cs fs_void ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
  | Ecase (e1, bl) ->
      let res = vs_result e1 in
      let branch ({ ppat_pattern = pat }, e) =
        t_close_branch pat (wp_expr env e q xq) in
      let w = t_case (t_var res) (List.map branch bl) in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
  | Eghost e1 ->
      wp_label e (wp_expr env e1 q xq)
  | Eraise (xs, e1) ->
      let q = try Mexn.find xs xq with
        Not_found -> assert false in
      wp_label e (wp_expr env e1 q xq)
  | Etry (e1, bl) ->
      let branch (xs,v,e) acc =
        let w = wp_expr env e q xq in
        let q = create_post v.pv_vs w in
        Mexn.add xs q acc in
      let xq = List.fold_right branch bl xq in
      wp_label e (wp_expr env e1 q xq)
683 684
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
685
      let f = wp_expl expl_assert f in
686 687 688
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
689
      let f = wp_expl expl_check f in
690 691 692
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
693
      let f = wp_expl expl_assume f in
694
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
695
  | Eabsurd ->
696
      wp_label e t_absurd
697 698
  | Eany spec ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
Andrei Paskevich's avatar
Andrei Paskevich committed
699 700
      let p = t_label ?loc:e.e_loc p.t_label p in
      (* TODO: propagate call labels into tyc.c_post *)
701
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
702
      wp_and ~sym:false p w
703 704
  | Eapp (e1,_,spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
705
      let p = t_label ?loc:e.e_loc p.t_label p in
706
      let d =
707 708
        if spec.c_letrec = 0 || spec.c_variant = [] then t_true else
        let olds = Mint.find_def [] spec.c_letrec env.letrec_var in
709
        if olds = [] then t_true (* we are out of letrec *) else
710
        decrease e.e_loc expl_variant env olds spec.c_variant in
711
      (* TODO: propagate call labels into tyc.c_post *)
712
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
713
      let w = wp_and ~sym:true d (wp_and ~sym:false p w) in
714 715
      let q = create_unit_post w in
      wp_expr env e1 q xq (* FIXME? should (wp_label e) rather be here? *)
716 717 718 719 720
  | Eabstr (e1, spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
      let w1 = backstep (wp_expr env e1) spec.c_post spec.c_xpost in
      let w2 = wp_abstract env e1.e_effect spec.c_post spec.c_xpost q xq in
      wp_and ~sym:false p (wp_and ~sym:true (wp_label e w1) w2)
721 722 723 724 725 726 727 728 729 730 731 732 733 734
  | Eassign (e1, reg, pv) ->
      let rec get_term d = match d.e_node with
        | Elogic t -> t
        | Evalue v -> t_var v.pv_vs
        | Eghost e | Elet (_,e) | Erec (_,e) -> get_term e
        | _ -> Loc.errorm ?loc:e.e_loc
            "Cannot compute the WP for this assignment"
      in
      let f = t_equ (get_term e1) (t_var pv.pv_vs) in
      let c_q = create_unit_post f in
      let eff = eff_write eff_empty reg in
      let w = wp_abstract env eff c_q Mexn.empty q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
Andrei Paskevich's avatar
Andrei Paskevich committed
735 736 737
  | Eloop (inv, varl, e1) ->
      (* TODO: what do we do about well-foundness? *)
      let i = wp_expl expl_loop_keep inv in
738
      let olds = List.map (fun (t,_) -> t_at_old t) varl in
739
      let d = decrease e.e_loc expl_loopvar env olds varl in
Andrei Paskevich's avatar
Andrei Paskevich committed
740
      let q = create_unit_post (wp_and ~sym:true i d) in
Andrei Paskevich's avatar
Andrei Paskevich committed
741
      let w = backstep (wp_expr env e1) q xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
742 743 744 745
      let regs = regs_of_writes e1.e_effect in
      let w = quantify env regs (wp_implies inv w) in
      let i = wp_expl expl_loop_init inv in
      wp_label e (wp_and ~sym:true i w)
Andrei Paskevich's avatar
Andrei Paskevich committed
746 747 748 749 750 751 752 753 754 755 756 757 758 759
  | Efor ({pv_vs = x}, ({pv_vs = v1}, d, {pv_vs = v2}), inv, e1) ->
      (* wp(for x = v1 to v2 do inv { I(x) } e1, Q, R) =
             v1 > v2  -> Q
         and v1 <= v2 ->     I(v1)
                         and forall S. forall i. v1 <= i <= v2 ->
                                                 I(i) -> wp(e1, I(i+1), R)
                                       and I(v2+1) -> Q *)
      let gt, le, incr = match d with
        | Mlw_expr.To     -> env.ps_int_gt, env.ps_int_le, t_int_const "1"
        | Mlw_expr.DownTo -> env.ps_int_lt, env.ps_int_ge, t_int_const "-1" in
      let v1_gt_v2 = ps_app gt [t_var v1; t_var v2] in
      let v1_le_v2 = ps_app le [t_var v1; t_var v2] in
      let q = open_unit_post q in
      let wp_init =
760
        wp_expl expl_loop_init (t_subst_single x (t_var v1) inv) in
Andrei Paskevich's avatar
Andrei Paskevich committed
761
      let wp_step =
762 763 764
        let next = fs_app env.fs_int_pl [t_var x; incr] ty_int in
        let post = wp_expl expl_loop_keep (t_subst_single x next inv) in
        wp_expr env e1 (create_unit_post post) xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
765 766 767 768 769 770 771
      let wp_last =
        let v2pl1 = fs_app env.fs_int_pl [t_var v2; incr] ty_int in
        wp_implies (t_subst_single x v2pl1 inv) q in
      let wp_good = wp_and ~sym:true
        wp_init
        (quantify env (regs_of_writes e1.e_effect)
           (wp_and ~sym:true
772
              (wp_forall [x] (wp_implies
Andrei Paskevich's avatar
Andrei Paskevich committed
773 774
                (wp_and ~sym:true (ps_app le [t_var v1; t_var x])
                                  (ps_app le [t_var x;  t_var v2]))
775
                (wp_implies inv wp_step)))
Andrei Paskevich's avatar
Andrei Paskevich committed
776 777 778 779 780 781 782
              wp_last))
      in
      let wp_full = wp_and ~sym:true
        (wp_implies v1_gt_v2 q)
        (wp_implies v1_le_v2 wp_good)
      in
      wp_label e wp_full
783

Andrei Paskevich's avatar
Andrei Paskevich committed
784 785 786 787 788 789 790
and wp_abstract env c_eff c_q c_xq q xq =
  let regs = regs_of_writes c_eff in
  let exns = exns_of_raises c_eff in
  let quantify_post c_q q =
    let v, f = open_post q in
    let c_v, c_f = open_post c_q in
    let c_f = t_subst_single c_v (t_var v) c_f in
791
    let f = wp_forall_post v c_f f in
Andrei Paskevich's avatar
Andrei Paskevich committed
792 793 794 795 796 797 798
    quantify env regs f
  in
  let quantify_xpost _ c_xq xq =
    Some (quantify_post c_xq xq) in
  let proceed c_q c_xq =
    let f = quantify_post c_q q in
    (* every xs in exns is guaranteed to be in c_xq and xq *)
799 800
    assert (Mexn.set_submap exns xq);
    assert (Mexn.set_submap exns c_xq);
Andrei Paskevich's avatar
Andrei Paskevich committed
801 802 803
    let xq = Mexn.set_inter xq exns in
    let c_xq = Mexn.set_inter c_xq exns in
    let mexn = Mexn.inter quantify_xpost c_xq xq in
804
    (* FIXME? This wp_ands is asymmetric in Pgm_wp *)
Andrei Paskevich's avatar
Andrei Paskevich committed
805 806
    wp_ands ~sym:true (f :: Mexn.values mexn)
  in
Andrei Paskevich's avatar
Andrei Paskevich committed
807
  backstep proceed c_q c_xq
Andrei Paskevich's avatar
Andrei Paskevich committed
808

809
and wp_fun_defn env { fun_ps = ps ; fun_lambda = l } =
810
  let lab = fresh_mark () and c = l.l_spec in
811 812 813
  let add_arg sbs pv = ity_match sbs pv.pv_vtv.vtv_ity pv.pv_vtv.vtv_ity in
  let subst = List.fold_left add_arg ps.ps_subst l.l_args in
  let regs = Mreg.map (fun _ -> ()) subst.ity_subst_reg in
814
  let args = List.map (fun pv -> pv.pv_vs) l.l_args in
815 816
  let env =
    if c.c_letrec = 0 || c.c_variant = [] then env else
817
    let lab = t_var lab in
Andrei Paskevich's avatar
Andrei Paskevich committed
818
    let t_at_lab (t,_) = t_app fs_at [t; lab] t.t_ty in
819
    let tl = List.map t_at_lab c.c_variant in
820 821
    let lrv = Mint.add c.c_letrec tl env.letrec_var in
    { env with letrec_var = lrv } in
822
  let q = old_mark lab (wp_expl expl_post c.c_post) in
823
  let conv p = old_mark lab (wp_expl expl_xpost p) in
824 825
  let f = wp_expr env l.l_expr q (Mexn.map conv c.c_xpost) in
  let f = wp_implies c.c_pre (erase_mark lab f) in
Andrei Paskevich's avatar
Andrei Paskevich committed
826
  wp_forall args (quantify env regs f)
827

828
and wp_rec_defn env fdl = List.map (wp_fun_defn env) fdl
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in
  let rec t_iff_bool f1 f2 = match f1.t_node, f2.t_node with
    | Tnot f1, _ -> t_not_simp (t_iff_bool f1 f2)
    | _, Tnot f2 -> t_not_simp (t_iff_bool f1 f2)
    | Tapp (ps1, [t1; { t_node = Tapp (ls1, []) }]),
      Tapp (ps2, [t2; { t_node = Tapp (ls2, []) }])
      when ls_equal ps1 ps_equ && ls_equal ps2 ps_equ &&
           is_bool ls1 && is_bool ls2 ->
        if ls_equal ls1 ls2 then t_equ t1 t2 else t_neq t1 t2
    | _ ->
        t_iff_simp f1 f2
  in
  let rec t_btop t = t_label ?loc:t.t_loc t.t_label (* t_label_copy? *)
    (match t.t_node with
    | Tif (f,t1,t2) ->
        t_if_simp (f_btop f) (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_andb ->
        t_and_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_orb ->
        t_or_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1]) when ls_equal ls ls_notb ->
        t_not_simp (t_btop t1)
    | Tapp (ls, []) when ls_equal ls ls_True ->
        t_true
    | Tapp (ls, []) when ls_equal ls ls_False ->
        t_false
    | _ ->
        t_equ_simp (f_btop t) t_True)
  and f_btop f = match f.t_node with
    | Tapp (ls, [{t_ty = Some {ty_node = Tyapp (ts, [])}} as l; r])
      when ls_equal ls ps_equ && ts_equal ts ts_bool ->
        t_label ?loc:f.t_loc f.t_label (t_iff_bool (t_btop l) (t_btop r))
    | _ ->
        t_map_simp f_btop f
  in
  f_btop f
***)
876

877 878 879 880 881 882 883
(* replace t_absurd with t_false *)
let rec unabsurd f = match f.t_node with
  | Tapp (ls, []) when ls_equal ls ls_absurd ->
      t_label_copy f t_false
  | _ ->
      t_map unabsurd f

884
let add_wp_decl km name f uc =
885
  (* prepare a proposition symbol *)
Andrei Paskevich's avatar
Andrei Paskevich committed
886
  let s = "WP_parameter " ^ name.id_string in
887
  let lab = Ident.create_label ("expl:parameter " ^ name.id_string) in
888 889 890 891
  let label = Slab.add lab name.id_label in
  let id = id_fresh ~label ?loc:name.id_loc s in
  let pr = create_prsymbol id in
  (* prepare the VC formula *)
892
  let f = remove_at f in
893 894 895
  (* let f = bool_to_prop uc f in *)
  let f = unabsurd f in
  (* get a known map with tuples added *)
896 897 898
  let lkm = Theory.get_known uc in
  (* remove redundant invariants *)
  let f = if Debug.test_flag no_track then f else track_values lkm km f in
899
  (* simplify f *)
900 901
  let f = if Debug.test_flag no_eval then f else
    Eval_match.eval_match ~inline:Eval_match.inline_nonrec_linear lkm f in
902 903 904 905
  (* printf "wp: f=%a@." print_term f; *)
  let d = create_prop_decl Pgoal pr f in
  Theory.add_decl uc d

Andrei Paskevich's avatar
Andrei Paskevich committed
906 907 908 909 910
let mk_env env km th =
  let th_int = Env.find_theory env ["int"] "Int" in
  { prog_known = km;
    pure_known = Theory.get_known th;
    global_env = env;
Andrei Paskevich's avatar
Andrei Paskevich committed
911 912 913 914 915
    ps_int_le  = Theory.ns_find_ls th_int.th_export ["infix <="];
    ps_int_ge  = Theory.ns_find_ls th_int.th_export ["infix >="];
    ps_int_lt  = Theory.ns_find_ls th_int.th_export ["infix <"];
    ps_int_gt  = Theory.ns_find_ls th_int.th_export ["infix >"];
    fs_int_pl  = Theory.ns_find_ls th_int.th_export ["infix +"];
916
    letrec_var = Mint.empty;
Andrei Paskevich's avatar
Andrei Paskevich committed
917
  }
918

919
let wp_let env km th { let_sym = lv; let_expr = e } =
920 921
  let env = mk_env env km th in
  let q, xq = default_post e.e_vty e.e_effect in
922
  let f = wp_expr env e q xq in
923 924 925 926
  let f = wp_forall (Mvs.keys f.t_vars) f in
  let id = match lv with
    | LetV pv -> pv.pv_vs.vs_name
    | LetA ps -> ps.ps_name in
927
  add_wp_decl km id f th
928

929
let wp_rec env km th fdl =
930
  let env = mk_env env km th in
931
  let fl = wp_rec_defn env fdl in
932
  let add_one th d f =
933
    Debug.dprintf debug "wp %s = %a@\n----------------@."
934
      d.fun_ps.ps_name.id_string Pretty.print_term f;
935
    let f = wp_forall (Mvs.keys f.t_vars) f in
936
    add_wp_decl km d.fun_ps.ps_name f th
937
  in
938
  List.fold_left2 add_one th fdl fl
939

940
let wp_val _env _km th _lv = th
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

(*****************************************************************************)

(* Efficient Weakest Preconditions

  Following Leino, see
  http://research.microsoft.com/apps/pubs/default.aspx?id=70052

  Roughly, the idea is the following. From a program expression e, we compute
  two formulas OK and N. Formula OK means ``the execution of e does not go
  wrong'' and formula N is an input-output relation between initial and
  final state of e's execution.

  Thus the weakest precondition of e is simply OK.
  N is involved in recursive computations, e.g.
  OK(fun x -> {p} e {q}) = forall x. p => OK(e) /\ (forall result. N(e) => q)
  And so on.

  In practice, this is a bit more involved, since execution of e may raise
  exceptions. So formula N comes with other formulas E(x), once for each
  exception x that is possibly raised by e. E(x) is the input-output relation
  that holds when exception x is raised.
*)

let fast_wp = Debug.register_flag "fast_wp"
  ~desc:"Efficient Weakest Preconditions."

module Subst = struct

970
(* dead code
971
  type t = unit
972
*)
973 974 975 976 977

  let empty = ()

  let term _s t = t

978
(* dead code
979
  let frame _ef s = s
980
*)
981 982 983 984 985 986 987 988 989 990