mlw_wp.ml 44 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2013   --   INRIA - CNRS - Paris-Sud University  *)
Andrei Paskevich's avatar
Andrei Paskevich committed
5 6 7 8 9 10
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(*                                                                  *)
(********************************************************************)
Andrei Paskevich's avatar
Andrei Paskevich committed
11

12
open Stdlib
Andrei Paskevich's avatar
Andrei Paskevich committed
13 14 15
open Ident
open Ty
open Term
16
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
17 18 19 20 21
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

22
let debug = Debug.register_info_flag "whyml_wp"
Andrei Paskevich's avatar
Andrei Paskevich committed
23
  ~desc:"Print@ details@ of@ verification@ conditions@ generation."
24

25
let no_track = Debug.register_flag "wp_no_track"
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27
  ~desc:"Do@ not@ remove@ redundant@ type@ invariant@ conditions@ from@ VCs."

28
let no_eval = Debug.register_flag "wp_no_eval"
Andrei Paskevich's avatar
Andrei Paskevich committed
29
  ~desc:"Do@ not@ simplify@ pattern@ matching@ on@ record@ datatypes@ in@ VCs."
30

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
31 32
let lemma_label = Ident.create_label "why3:lemma"

33
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
34 35 36 37

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

38
let ity_mark = ity_pur ts_mark []
39 40

let fresh_mark () = create_vsymbol (id_fresh "'mark") ty_mark
41

Andrei Paskevich's avatar
Andrei Paskevich committed
42 43 44 45 46 47 48 49
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

50 51
let th_mark_at =
  let uc = create_theory (id_fresh "WP builtins: at") in
Andrei Paskevich's avatar
Andrei Paskevich committed
52 53
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
54 55 56 57 58
  close_theory uc

let th_mark_old =
  let uc = create_theory (id_fresh "WP builtins: old") in
  let uc = use_export uc th_mark_at in
Andrei Paskevich's avatar
Andrei Paskevich committed
59 60 61
  let uc = add_param_decl uc fs_old in
  close_theory uc

62
let fs_now = create_lsymbol (id_fresh "%now") [] (Some ty_mark)
Andrei Paskevich's avatar
Andrei Paskevich committed
63 64
let t_now = fs_app fs_now [] ty_mark
let e_now = e_lapp fs_now [] (ity_pur ts_mark [])
Andrei Paskevich's avatar
Andrei Paskevich committed
65

66 67
(* [vs_old] appears in the postconditions given to the core API,
   which expects every vsymbol to be a pure part of a pvsymbol *)
68
let pv_old = create_pvsymbol (id_fresh "%old") ity_mark
69 70
let vs_old = pv_old.pv_vs
let t_old  = t_var vs_old
71

Andrei Paskevich's avatar
Andrei Paskevich committed
72 73
let t_at_old t = t_app fs_at [t; t_old] t.t_ty

74 75
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
76

77
let mk_t_if f = t_if f t_bool_true t_bool_false
78
let to_term t = if t.t_ty = None then mk_t_if t else t
79

80
(* any vs in post/xpost is either a pvsymbol or a fresh mark *)
81
let ity_of_vs vs =
82
  if Ty.ty_equal vs.vs_ty ty_mark then ity_mark else (restore_pv vs).pv_ity
83 84 85

(* replace every occurrence of [old(t)] with [at(t,'old)] *)
let rec remove_old f = match f.t_node with
Andrei Paskevich's avatar
Andrei Paskevich committed
86
  | Tapp (ls,[t]) when ls_equal ls fs_old -> t_at_old (remove_old t)
87 88 89 90 91 92 93 94
  | _ -> t_map remove_old f

(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t; { t_node = Tapp (fs,[]) }])
    when ls_equal ls fs_at && ls_equal fs fs_now -> remove_at t
  | _ -> t_map remove_at f

95 96 97 98
(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
Andrei Paskevich's avatar
Andrei Paskevich committed
99 100
let erase_mark lab t = t_subst_single lab t_now t

Andrei Paskevich's avatar
Andrei Paskevich committed
101 102
(* retreat to the point of the current postcondition's ['old] *)
let backstep fn q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
103 104 105
  let lab = fresh_mark () in
  let f = fn (old_mark lab q) (Mexn.map (old_mark lab) xq) in
  erase_mark lab f
106

107
(** WP utilities *)
108 109 110 111 112 113 114

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
115
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
116

117 118 119 120 121
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

Andrei Paskevich's avatar
Andrei Paskevich committed
122
let expl_pre       = Ident.create_label "expl:precondition"
123
let expl_post      = Ident.create_label "expl:postcondition"
Andrei Paskevich's avatar
Andrei Paskevich committed
124
let expl_xpost     = Ident.create_label "expl:exceptional postcondition"
125
let expl_assume    = Ident.create_label "expl:assumption"
Andrei Paskevich's avatar
Andrei Paskevich committed
126 127
let expl_assert    = Ident.create_label "expl:assertion"
let expl_check     = Ident.create_label "expl:check"
MARCHE Claude's avatar
MARCHE Claude committed
128
let expl_absurd    = Ident.create_label "expl:unreachable point"
129
let expl_type_inv  = Ident.create_label "expl:type invariant"
Andrei Paskevich's avatar
Andrei Paskevich committed
130 131
let expl_loop_init = Ident.create_label "expl:loop invariant init"
let expl_loop_keep = Ident.create_label "expl:loop invariant preservation"
132 133
let expl_loopvar   = Ident.create_label "expl:loop variant decrease"
let expl_variant   = Ident.create_label "expl:variant decrease"
134

135 136 137 138 139
let rec wp_expl l f = match f.t_node with
  | _ when Slab.mem Split_goal.stop_split f.t_label -> t_label_add l f
  | Tbinop (Tand,f1,f2) -> t_label_copy f (t_and (wp_expl l f1) (wp_expl l f2))
  | Teps _ -> t_label_add l f (* post-condition, push down later *)
  | _ -> f
140

141
let wp_and ~sym f1 f2 =
142 143
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

144
let wp_ands ~sym fl =
145 146
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

147
let wp_implies f1 f2 = t_implies_simp f1 f2
148

149 150
let wp_let v t f = t_let_close_simp v t f

151 152
let wp_forall vl f = t_forall_close_simp vl [] f

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
let wp_forall_post v p f =
  (* we optimize for the case when a postcondition
     is of the form (... /\ result = t /\ ...) *)
  let rec down p = match p.t_node with
    | Tbinop (Tand,l,r) ->
        begin match down l with
          | None, _ ->
              let t, r = down r in
              t, t_label_copy p (t_and_simp l r)
          | t, l ->
              t, t_label_copy p (t_and_simp l r)
        end
    | Tapp (ps,[{t_node = Tvar u};t])
      when ls_equal ps ps_equ && vs_equal u v && not (Mvs.mem v t.t_vars) ->
        Some t, t_true
    | _ ->
        None, p
  in
  if ty_equal v.vs_ty ty_unit then
    t_subst_single v t_void (wp_implies p f)
  else match down p with
    | Some t, p -> wp_let v t (wp_implies p f)
    | _ -> wp_forall [v] (wp_implies p f)
176

Andrei Paskevich's avatar
Andrei Paskevich committed
177 178
(* regs_of_reads, and therefore regs_of_effect, only take into account
   reads in program expressions and ignore the variables in specification *)
179
(* dead code
180
let regs_of_reads  eff = Sreg.union eff.eff_reads eff.eff_ghostr
181
*)
182
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
183
(* dead code
184
let regs_of_effect eff = Sreg.union (regs_of_reads eff) (regs_of_writes eff)
185
*)
Andrei Paskevich's avatar
Andrei Paskevich committed
186
let exns_of_raises eff = Sexn.union eff.eff_raises eff.eff_ghostx
187

188 189
let open_post q =
  let v, f = open_post q in
190
  v, Slab.fold wp_expl q.t_label f
191

192 193 194 195 196 197 198 199 200 201 202
let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

let create_unit_post =
  let v = create_vsymbol (id_fresh "void") ty_unit in
  fun q -> create_post v q

let vs_result e =
  create_vsymbol (id_fresh ?loc:e.e_loc "result") (ty_of_vty e.e_vty)

203 204 205 206 207 208
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
Andrei Paskevich's avatar
Andrei Paskevich committed
209 210 211 212 213
  ps_int_le  : Term.lsymbol;
  ps_int_ge  : Term.lsymbol;
  ps_int_lt  : Term.lsymbol;
  ps_int_gt  : Term.lsymbol;
  fs_int_pl  : Term.lsymbol;
214
  fs_int_mn  : Term.lsymbol;
215
  letrec_var : term list Mint.t;
216
}
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
let decrease_alg ?loc env old_t t =
  let oty = t_type old_t in
  let nty = t_type t in
  let quit () =
    Loc.errorm ?loc "no default order for %a" Pretty.print_term t in
  let ts = match oty with { ty_node = Tyapp (ts,_) } -> ts | _ -> quit () in
  let csl = Decl.find_constructors env.pure_known ts in
  if csl = [] then quit ();
  let sbs = ty_match Mtv.empty (ty_app ts (List.map ty_var ts.ts_args)) oty in
  let add_arg acc fty =
    let fty = ty_inst sbs fty in
    if ty_equal fty nty then
      let vs = create_vsymbol (id_fresh "f") nty in
      t_or_simp acc (t_equ (t_var vs) t), pat_var vs
    else acc, pat_wild fty in
  let add_cs (cs,_) =
234
    let f, pl = Lists.map_fold_left add_arg t_false cs.ls_args in
235 236 237 238 239 240 241
    t_close_branch (pat_app cs pl oty) f in
  t_case old_t (List.map add_cs csl)

let decrease_rel ?loc env old_t t = function
  | Some ls -> ps_app ls [t; old_t]
  | None when ty_equal (t_type t) ty_int ->
      t_and
242
        (ps_app env.ps_int_le [t_nat_const 0; old_t])
243 244 245
        (ps_app env.ps_int_lt [t; old_t])
  | None -> decrease_alg ?loc env old_t t

246
let decrease loc lab env olds varl =
247
  let rec decr pr olds varl = match olds, varl with
248 249 250 251 252 253 254 255 256 257
    | [], [] -> (* empty variant *)
        t_true
    | [old_t], [t, rel] ->
        t_and_simp pr (decrease_rel ?loc env old_t t rel)
    | old_t::_, (t,_)::_ when not (oty_equal old_t.t_ty t.t_ty) ->
        Loc.errorm ?loc "cannot use lexicographic ordering"
    | old_t::olds, (t,rel)::varl ->
        let dt = t_and_simp pr (decrease_rel ?loc env old_t t rel) in
        let pr = t_and_simp pr (t_equ old_t t) in
        t_or_simp dt (decr pr olds varl)
258
    | _ -> assert false
Andrei Paskevich's avatar
Andrei Paskevich committed
259
  in
260 261 262 263
  t_label ?loc lab (decr t_true olds varl)

let expl_variant = Slab.add Split_goal.stop_split (Slab.singleton expl_variant)
let expl_loopvar = Slab.add Split_goal.stop_split (Slab.singleton expl_loopvar)
Andrei Paskevich's avatar
Andrei Paskevich committed
264

265 266
(** Reconstruct pure values after writes *)

267
let analyze_var fn_down fn_join lkm km vs ity =
268 269 270 271
  let branch (cs,fdl) =
    let mk_var fd = create_vsymbol (id_fresh "y") (ty_of_ity fd.fd_ity) in
    let vars = List.map mk_var fdl in
    let t = fn_join cs (List.map2 fn_down vars fdl) vs.vs_ty in
272 273
    let pat = pat_app cs (List.map pat_var vars) vs.vs_ty in
    t_close_branch pat t in
274 275
  let csl = Mlw_decl.inst_constructors lkm km ity in
  t_case (t_var vs) (List.map branch csl)
276

277
let update_var env mreg vs =
278
  let rec update vs { fd_ity = ity; fd_mut = mut } =
279 280
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
281
    let vs = Opt.fold (fun _ -> get_vs) vs mut in
282 283
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
284
    if ity_immutable ity || not (Mreg.exists check_reg mreg) then t_var vs
285 286
    else analyze_var update fs_app env.pure_known env.prog_known vs ity in
  update vs { fd_ity = ity_of_vs vs; fd_ghost = false; fd_mut = None }
287

Andrei Paskevich's avatar
Andrei Paskevich committed
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
(* substitute the updated values in the "contemporary" variables *)
let rec subst_at_now now m t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs m) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old -> assert false
  | Tapp (ls, [_; mark]) when ls_equal ls fs_at ->
      let now = match mark.t_node with
        | Tvar vs when vs_equal vs vs_old -> assert false
        | Tapp (ls,[]) when ls_equal ls fs_now -> true
        | _ -> false in
      t_map (subst_at_now now m) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let m = Mvs.set_inter m t.t_vars in
      if Mvs.is_empty m then t else
      t_map (subst_at_now now m) t
  | _ ->
      t_map (subst_at_now now m) t

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
(* quantify over all references in eff
   eff : effect
   f   : formula

   let eff = { rho1, ..., rhon }
   we collect in vars all variables involving these regions
   let vars = { v1, ..., vm }

     forall r1:ty(rho1). ... forall rn:ty(rhon).
     let v'1 = update v1 r1...rn in
     ...
     let v'm = update vm r1...rn in
     f[vi <- v'i]
*)

let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
324 325
let model3_lab = Slab.singleton (create_label "model:cond")

326 327
let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

328 329
let quantify env regs f =
  (* mreg : updated region -> vs *)
330
  let get_var reg () =
331 332
    let test vs _ id = match (ity_of_vs vs).ity_node with
      | Ityapp (_,_,[r]) when reg_equal r reg -> vs.vs_name
333 334 335 336
      | _ -> id in
    let id = Mvs.fold test f.t_vars reg.reg_name in
    mk_var id model1_lab (ty_of_ity reg.reg_ity)
  in
337
  let mreg = Mreg.mapi get_var regs in
338
  (* update all program variables involving these regions *)
339
  let update_var vs _ = match update_var env mreg vs with
340 341 342 343 344 345 346
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
  let vars = Mvs.mapi_filter update_var f.t_vars in
  (* vv' : old vs -> new vs *)
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
  (* quantify *)
347
  let update v t f = wp_let (Mvs.find v vv') t f in
Andrei Paskevich's avatar
Andrei Paskevich committed
348
  let f = Mvs.fold update vars (subst_at_now true vv' f) in
349
  wp_forall (List.rev (Mreg.values mreg)) f
350

351 352 353 354 355 356 357 358
(** Invariants *)

let get_invariant km t =
  let ty = t_type t in
  let ts = match ty.ty_node with
    | Tyapp (ts,_) -> ts
    | _ -> assert false in
  let rec find_td = function
359
    | (its,_,inv) :: _ when ts_equal ts its.its_ts -> inv
360 361 362 363 364 365 366 367
    | _ :: tdl -> find_td tdl
    | [] -> assert false in
  let pd = Mid.find ts.ts_name km in
  let inv = match pd.Mlw_decl.pd_node with
    | Mlw_decl.PDdata tdl -> find_td tdl
    | _ -> assert false in
  let sbs = Ty.ty_match Mtv.empty (t_type inv) ty in
  let u, p = open_post (t_ty_subst sbs Mvs.empty inv) in
368
  wp_expl expl_type_inv (t_subst_single u t p)
369 370 371 372 373

let ps_inv = Term.create_psymbol (id_fresh "inv")
  [ty_var (create_tvsymbol (id_fresh "a"))]

let full_invariant lkm km vs ity =
374
  let rec update vs { fd_ity = ity } =
375
    if not (ity_has_inv ity) then t_true else
376 377 378 379 380 381 382 383 384
    (* what is our current invariant? *)
    let f = match ity.ity_node with
      | Ityapp (its,_,_) when its.its_inv ->
          if Debug.test_flag no_track
          then get_invariant km (t_var vs)
          else ps_app ps_inv [t_var vs]
      | _ -> t_true in
    (* what are our sub-invariants? *)
    let join _ fl _ = wp_ands ~sym:true fl in
385
    let g = analyze_var update join lkm km vs ity in
386 387 388
    (* put everything together *)
    wp_and ~sym:true f g
  in
389
  update vs { fd_ity = ity; fd_ghost = false; fd_mut = None }
390 391

(** Value tracking *)
392 393 394

type point = int
type value = point list Mls.t (* constructor -> field list *)
395

396
type state = {
397 398
  st_km   : Mlw_decl.known_map;
  st_lkm  : Decl.known_map;
399
  st_mem  : value Hint.t;
400
  st_next : point ref;
401 402
}

403
(* dead code
404 405 406
type names = point Mvs.t  (* variable -> point *)
type condition = lsymbol Mint.t (* point -> constructor *)
type lesson = condition list Mint.t (* point -> conditions for invariant *)
407
*)
408 409 410 411

let empty_state lkm km = {
  st_km   = km;
  st_lkm  = lkm;
412
  st_mem  = Hint.create 5;
413
  st_next = ref 0;
414 415 416
}

let next_point state =
417
  let res = !(state.st_next) in incr state.st_next; res
418

419
let make_value state ty =
420 421 422
  let get_p _ = next_point state in
  let new_cs cs = List.map get_p cs.ls_args in
  let add_cs m (cs,_) = Mls.add cs (new_cs cs) m in
423
  let csl = match ty.ty_node with
424 425
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
    | _ -> [] in
426 427
  List.fold_left add_cs Mls.empty csl

428
let match_point state ty p =
429
  try Hint.find state.st_mem p with Not_found ->
430
  let value = make_value state ty in
431
  if not (Mls.is_empty value) then
432
    Hint.replace state.st_mem p value;
433 434
  value

435 436 437 438 439 440 441 442 443 444 445 446 447 448
let rec open_pattern state names value p pat = match pat.pat_node with
  | Pwild -> names
  | Pvar vs -> Mvs.add vs p names
  | Papp (cs,patl) ->
      let add_pat names p pat =
        let value = match_point state pat.pat_ty p in
        open_pattern state names value p pat in
      List.fold_left2 add_pat names (Mls.find cs value) patl
  | Por _ ->
      let add_vs vs s = Mvs.add vs (next_point state) s in
      Svs.fold add_vs pat.pat_vars names
  | Pas (pat,vs) ->
      open_pattern state (Mvs.add vs p names) value p pat

449 450 451 452
let rec point_of_term state names t = match t.t_node with
  | Tvar vs ->
      Mvs.find vs names
  | Tapp (ls, tl) ->
453
      begin match Mid.find ls.ls_name state.st_lkm with
454 455 456 457 458 459 460 461 462
        | { Decl.d_node = Decl.Ddata tdl } ->
            let is_cs (cs,_) = ls_equal ls cs in
            let is_cs (_,csl) = List.exists is_cs csl in
            if List.exists is_cs tdl
            then point_of_constructor state names ls tl
            else point_of_projection state names ls (List.hd tl)
        | _ -> next_point state
      end
  | Tlet (t1, bt) ->
463
      let p1 = point_of_term state names t1 in
464
      let v, t2 = t_open_bound bt in
465 466 467 468 469 470 471
      let names = Mvs.add v p1 names in
      point_of_term state names t2
  | Tcase (t1,[br]) ->
      let pat, t2 = t_open_branch br in
      let p1 = point_of_term state names t1 in
      let value = match_point state pat.pat_ty p1 in
      let names = open_pattern state names value p1 pat in
472
      point_of_term state names t2
473 474 475 476
  | Tcase (t1,bl) ->
      (* we treat here the case of a value update: the value
         of each branch must be a distinct constructor *)
      let p = next_point state in
477
      let ty = Opt.get t.t_ty in
478
      let p1 = point_of_term state names t1 in
479
      let value = match_point state (Opt.get t1.t_ty) p1 in
480 481 482 483 484 485 486 487 488 489 490 491
      let branch acc br =
        let pat, t2 = t_open_branch br in
        let ls = match t2.t_node with
          | Tapp (ls,_) -> ls | _ -> raise Exit in
        let names = open_pattern state names value p1 pat in
        let p2 = point_of_term state names t2 in
        let v2 = match_point state ty p2 in
        Mls.add_new Exit ls (Mls.find_exn Exit ls v2) acc
      in
      begin try
        let value = List.fold_left branch Mls.empty bl in
        let value = Mls.set_union value (make_value state ty) in
492
        Hint.replace state.st_mem p value
493 494 495
      with Exit -> () end;
      p
  | Tconst _ | Tif _ | Teps _ -> next_point state
496 497 498 499
  | Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> assert false

and point_of_constructor state names ls tl =
  let p = next_point state in
500
  let pl = List.map (point_of_term state names) tl in
501
  let value = make_value state (Opt.get ls.ls_value) in
502
  let value = Mls.add ls pl value in
503
  Hint.replace state.st_mem p value;
504 505 506
  p

and point_of_projection state names ls t1 =
507
  let ty = Opt.get t1.t_ty in
508
  let csl = match ty.ty_node with
509
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
510 511 512
    | _ -> assert false in
  match csl with
    | [cs,pjl] ->
513
        let p1 = point_of_term state names t1 in
514
        let value = match_point state ty p1 in
515 516 517 518 519 520 521
        let rec find_p pjl pl = match pjl, pl with
          | Some pj::_, p::_ when ls_equal ls pj -> p
          | _::pjl, _::pl -> find_p pjl pl
          | _ -> assert false in
        find_p pjl (Mls.find cs value)
    | _ -> next_point state (* more than one, can't choose *)

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
let rec track_values state names lesson cond f = match f.t_node with
  | Tapp (ls, [t1]) when ls_equal ls ps_inv ->
      let p1 = point_of_term state names t1 in
      let condl = Mint.find_def [] p1 lesson in
      let contains c1 c2 = Mint.submap (fun _ -> ls_equal) c2 c1 in
      if List.exists (contains cond) condl then
        lesson, t_true
      else
        let good c = not (contains c cond) in
        let condl = List.filter good condl in
        let l = Mint.add p1 (cond::condl) lesson in
        l, get_invariant state.st_km t1
  | Tbinop (Timplies, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names l cond f2 in
      lesson, t_label_copy f (t_implies_simp f1 f2)
  | Tbinop (Tand, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let l, f2 = track_values state names l cond f2 in
      l, t_label_copy f (t_and_simp f1 f2)
  | Tif (fc, f1, f2) ->
      let _, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names lesson cond f2 in
      lesson, t_label_copy f (t_if_simp fc f1 f2)
  | Tcase (t1, bl) ->
      let p1 = point_of_term state names t1 in
548
      let value = match_point state (Opt.get t1.t_ty) p1 in
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
      let is_pat_var = function
        | { pat_node = Pvar _ } -> true | _ -> false in
      let branch l br =
        let pat, f1, cb = t_open_branch_cb br in
        let learn, cond = match bl, pat.pat_node with
          | [_], _ -> true, cond (* one branch, can learn *)
          | _, Papp (cs, pl) when List.for_all is_pat_var pl ->
              (try true, Mint.add_new Exit p1 cs cond (* can learn *)
              with Exit -> false, cond) (* contradiction, cannot learn *)
          | _, _ -> false, cond (* complex pattern, will not learn *)
        in
        let names = open_pattern state names value p1 pat in
        let m, f1 = track_values state names lesson cond f1 in
        let l = if learn then m else l in
        l, cb pat f1
      in
565
      let l, bl = Lists.map_fold_left branch lesson bl in
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
      l, t_label_copy f (t_case t1 bl)
  | Tlet (t1, bf) ->
      let p1 = point_of_term state names t1 in
      let v, f1, cb = t_open_bound_cb bf in
      let names = Mvs.add v p1 names in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_let_simp t1 (cb v f1))
  | Tquant (Tforall, qf) ->
      let vl, trl, f1, cb = t_open_quant_cb qf in
      let add_vs s vs = Mvs.add vs (next_point state) s in
      let names = List.fold_left add_vs names vl in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_forall_simp (cb vl trl f1))
  | Tbinop ((Tor|Tiff),_,_) | Tquant (Texists,_)
  | Tapp _ | Tnot _ | Ttrue | Tfalse -> lesson, f
  | Tvar _ | Tconst _ | Teps _ -> assert false

let track_values lkm km f =
  let state = empty_state lkm km in
  let _, f = track_values state Mvs.empty Mint.empty Mint.empty f in
  f
587

588 589
(** Weakest preconditions *)

590
let rec wp_expr env e q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
591
  let f = wp_desc env e q xq in
592
  if Debug.test_flag debug then begin
593
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
594 595 596
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
597
  f
598

599
and wp_desc env e q xq = match e.e_node with
600 601 602
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
603 604 605
      (* NOTE: if you replace this t_subst by t_let or anything else,
         you must handle separately the case "let mark = 'now in ...",
         which requires 'now to be substituted for mark in q *)
606
      t_subst_single v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
607 608 609
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
610
      t_subst_single v t q
611 612 613
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
614
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2)
615
    when Opt.equal Loc.equal v.pv_vs.vs_name.id_loc e1.e_loc ->
616 617 618 619 620
    (* we push the label down, past the implicitly inserted "let" *)
      let w = wp_expr env (e_label_copy e e2) q xq in
      let q = create_post v.pv_vs w in
      wp_expr env e1 q xq
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2) ->
621
      let w = wp_expr env e2 q xq in
622
      let q = create_post v.pv_vs w in
623
      wp_label e (wp_expr env e1 q xq)
624 625 626 627
  | Elet ({ let_sym = LetA _; let_expr = e1 }, e2) ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
628 629
  | Erec (fdl, e1) ->
      let fr = wp_rec_defn env fdl in
630 631 632
      let fe = wp_expr env e1 q xq in
      let fr = wp_ands ~sym:true fr in
      wp_label e (wp_and ~sym:true fr fe)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
  | Eif (e1, e2, e3) ->
      let res = vs_result e1 in
      let test = t_equ (t_var res) t_bool_true in
      let test = t_label ?loc:e1.e_loc model3_lab test in
      (* if both branches are pure, do not split *)
      let w =
        let get_term e = match e.e_node with
          | Elogic t -> to_term t
          | Evalue v -> t_var v.pv_vs
          | _ -> raise Exit in
        try
          let r2 = get_term e2 in
          let r3 = get_term e3 in
          let v, q = open_post q in
          t_subst_single v (t_if_simp test r2 r3) q
        with Exit ->
          let w2 = wp_expr env e2 q xq in
          let w3 = wp_expr env e3 q xq in
          t_if_simp test w2 w3
      in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
655 656 657 658 659 660 661 662 663 664 665
  (* optimization for the particular case let _ = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Pwild }}, e2]) ->
      let w = wp_expr env e2 q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
  (* optimization for the particular case let () = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Papp (cs,[]) }}, e2])
    when ls_equal cs fs_void ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
  | Ecase (e1, bl) ->
      let res = vs_result e1 in
      let branch ({ ppat_pattern = pat }, e) =
        t_close_branch pat (wp_expr env e q xq) in
      let w = t_case (t_var res) (List.map branch bl) in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
  | Eghost e1 ->
      wp_label e (wp_expr env e1 q xq)
  | Eraise (xs, e1) ->
      let q = try Mexn.find xs xq with
        Not_found -> assert false in
      wp_label e (wp_expr env e1 q xq)
  | Etry (e1, bl) ->
      let branch (xs,v,e) acc =
        let w = wp_expr env e q xq in
        let q = create_post v.pv_vs w in
        Mexn.add xs q acc in
      let xq = List.fold_right branch bl xq in
      wp_label e (wp_expr env e1 q xq)
686 687
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
688
      let f = wp_expl expl_assert f in
689 690 691
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
692
      let f = wp_expl expl_check f in
693 694 695
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
696
      let f = wp_expl expl_assume f in
697
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
698
  | Eabsurd ->
MARCHE Claude's avatar
MARCHE Claude committed
699
      wp_label e (t_label_add expl_absurd t_absurd)
700 701
  | Eany spec ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
Andrei Paskevich's avatar
Andrei Paskevich committed
702 703
      let p = t_label ?loc:e.e_loc p.t_label p in
      (* TODO: propagate call labels into tyc.c_post *)
704
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
705
      wp_and ~sym:false p w
706 707
  | Eapp (e1,_,spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
708
      let p = t_label ?loc:e.e_loc p.t_label p in
709
      let d =
710 711
        if spec.c_letrec = 0 || spec.c_variant = [] then t_true else
        let olds = Mint.find_def [] spec.c_letrec env.letrec_var in
712
        if olds = [] then t_true (* we are out of letrec *) else
713
        decrease e.e_loc expl_variant env olds spec.c_variant in
714
      (* TODO: propagate call labels into tyc.c_post *)
715
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
716
      let w = wp_and ~sym:true d (wp_and ~sym:false p w) in
717 718
      let q = create_unit_post w in
      wp_expr env e1 q xq (* FIXME? should (wp_label e) rather be here? *)
719 720 721 722 723
  | Eabstr (e1, spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
      let w1 = backstep (wp_expr env e1) spec.c_post spec.c_xpost in
      let w2 = wp_abstract env e1.e_effect spec.c_post spec.c_xpost q xq in
      wp_and ~sym:false p (wp_and ~sym:true (wp_label e w1) w2)
724 725 726 727 728 729 730 731
  | Eassign (pl, e1, reg, pv) ->
      (* if we create an intermediate variable npv to represent e1
         in the post-condition of the assign, the call to wp_abstract
         will have to update this variable separately (in addition to
         all existing variables in q that require update), creating
         duplication.  To avoid it, we try to detect whether the value
         of e1 can be represented by an existing pure term that can
         be reused in the post-condition. *)
732 733
      let rec get_term d = match d.e_node with
        | Eghost e | Elet (_,e) | Erec (_,e) -> get_term e
734 735 736
        | Evalue v -> vs_result e1, t_var v.pv_vs
        | Elogic t -> vs_result e1, t
        | _ ->
737
            let ity = ity_of_expr e1 in
738 739
            let id = id_fresh ?loc:e1.e_loc "o" in
            (* must be a pvsymbol or restore_pv will fail *)
740
            let npv = create_pvsymbol id ~ghost:e1.e_ghost ity in
741
            npv.pv_vs, t_var npv.pv_vs
742
      in
743 744 745
      let res, t = get_term e1 in
      let t = fs_app pl.pl_ls [t] pv.pv_vs.vs_ty in
      let c_q = create_unit_post (t_equ t (t_var pv.pv_vs)) in
746 747
      let eff = eff_write eff_empty reg in
      let w = wp_abstract env eff c_q Mexn.empty q xq in
748
      let q = create_post res w in
749
      wp_label e (wp_expr env e1 q xq)
Andrei Paskevich's avatar
Andrei Paskevich committed
750 751 752
  | Eloop (inv, varl, e1) ->
      (* TODO: what do we do about well-foundness? *)
      let i = wp_expl expl_loop_keep inv in
753
      let olds = List.map (fun (t,_) -> t_at_old t) varl in
754
      let d = decrease e.e_loc expl_loopvar env olds varl in
Andrei Paskevich's avatar
Andrei Paskevich committed
755
      let q = create_unit_post (wp_and ~sym:true i d) in
Andrei Paskevich's avatar
Andrei Paskevich committed
756
      let w = backstep (wp_expr env e1) q xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
757 758 759 760
      let regs = regs_of_writes e1.e_effect in
      let w = quantify env regs (wp_implies inv w) in
      let i = wp_expl expl_loop_init inv in
      wp_label e (wp_and ~sym:true i w)
Andrei Paskevich's avatar
Andrei Paskevich committed
761 762 763 764 765 766 767 768
  | Efor ({pv_vs = x}, ({pv_vs = v1}, d, {pv_vs = v2}), inv, e1) ->
      (* wp(for x = v1 to v2 do inv { I(x) } e1, Q, R) =
             v1 > v2  -> Q
         and v1 <= v2 ->     I(v1)
                         and forall S. forall i. v1 <= i <= v2 ->
                                                 I(i) -> wp(e1, I(i+1), R)
                                       and I(v2+1) -> Q *)
      let gt, le, incr = match d with
769 770 771 772
        | Mlw_expr.To     -> env.ps_int_gt, env.ps_int_le, env.fs_int_pl
        | Mlw_expr.DownTo -> env.ps_int_lt, env.ps_int_ge, env.fs_int_mn
      in
      let one = t_nat_const 1 in
Andrei Paskevich's avatar
Andrei Paskevich committed
773 774 775 776
      let v1_gt_v2 = ps_app gt [t_var v1; t_var v2] in
      let v1_le_v2 = ps_app le [t_var v1; t_var v2] in
      let q = open_unit_post q in
      let wp_init =
777
        wp_expl expl_loop_init (t_subst_single x (t_var v1) inv) in
Andrei Paskevich's avatar
Andrei Paskevich committed
778
      let wp_step =
779
        let next = fs_app incr [t_var x; one] ty_int in
780 781
        let post = wp_expl expl_loop_keep (t_subst_single x next inv) in
        wp_expr env e1 (create_unit_post post) xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
782
      let wp_last =
783
        let v2pl1 = fs_app incr [t_var v2; one] ty_int in
Andrei Paskevich's avatar
Andrei Paskevich committed
784 785 786 787 788
        wp_implies (t_subst_single x v2pl1 inv) q in
      let wp_good = wp_and ~sym:true
        wp_init
        (quantify env (regs_of_writes e1.e_effect)
           (wp_and ~sym:true
789
              (wp_forall [x] (wp_implies
Andrei Paskevich's avatar
Andrei Paskevich committed
790 791
                (wp_and ~sym:true (ps_app le [t_var v1; t_var x])
                                  (ps_app le [t_var x;  t_var v2]))
792
                (wp_implies inv wp_step)))
Andrei Paskevich's avatar
Andrei Paskevich committed
793 794 795 796 797 798 799
              wp_last))
      in
      let wp_full = wp_and ~sym:true
        (wp_implies v1_gt_v2 q)
        (wp_implies v1_le_v2 wp_good)
      in
      wp_label e wp_full
800

Andrei Paskevich's avatar
Andrei Paskevich committed
801 802 803 804 805 806 807
and wp_abstract env c_eff c_q c_xq q xq =
  let regs = regs_of_writes c_eff in
  let exns = exns_of_raises c_eff in
  let quantify_post c_q q =
    let v, f = open_post q in
    let c_v, c_f = open_post c_q in
    let c_f = t_subst_single c_v (t_var v) c_f in
808
    let f = wp_forall_post v c_f f in
Andrei Paskevich's avatar
Andrei Paskevich committed
809 810 811 812 813 814 815
    quantify env regs f
  in
  let quantify_xpost _ c_xq xq =
    Some (quantify_post c_xq xq) in
  let proceed c_q c_xq =
    let f = quantify_post c_q q in
    (* every xs in exns is guaranteed to be in c_xq and xq *)
816 817
    assert (Mexn.set_submap exns xq);
    assert (Mexn.set_submap exns c_xq);
Andrei Paskevich's avatar
Andrei Paskevich committed
818 819 820
    let xq = Mexn.set_inter xq exns in
    let c_xq = Mexn.set_inter c_xq exns in
    let mexn = Mexn.inter quantify_xpost c_xq xq in
821
    (* FIXME? This wp_ands is asymmetric in Pgm_wp *)
Andrei Paskevich's avatar
Andrei Paskevich committed
822 823
    wp_ands ~sym:true (f :: Mexn.values mexn)
  in
Andrei Paskevich's avatar
Andrei Paskevich committed
824
  backstep proceed c_q c_xq
Andrei Paskevich's avatar
Andrei Paskevich committed
825

826
and wp_fun_defn env { fun_ps = ps ; fun_lambda = l } =
827
  let lab = fresh_mark () and c = l.l_spec in
828
  let add_arg sbs pv = ity_match sbs pv.pv_ity pv.pv_ity in
829 830
  let subst = List.fold_left add_arg ps.ps_subst l.l_args in
  let regs = Mreg.map (fun _ -> ()) subst.ity_subst_reg in
831
  let args = List.map (fun pv -> pv.pv_vs) l.l_args in
832 833
  let env =
    if c.c_letrec = 0 || c.c_variant = [] then env else
834
    let lab = t_var lab in
Andrei Paskevich's avatar
Andrei Paskevich committed
835
    let t_at_lab (t,_) = t_app fs_at [t; lab] t.t_ty in
836
    let tl = List.map t_at_lab c.c_variant in
837 838
    let lrv = Mint.add c.c_letrec tl env.letrec_var in
    { env with letrec_var = lrv } in
839
  let q = old_mark lab (wp_expl expl_post c.c_post) in
840
  let conv p = old_mark lab (wp_expl expl_xpost p) in
841 842
  let f = wp_expr env l.l_expr q (Mexn.map conv c.c_xpost) in
  let f = wp_implies c.c_pre (erase_mark lab f) in
Andrei Paskevich's avatar
Andrei Paskevich committed
843
  wp_forall args (quantify env regs f)
844

845
and wp_rec_defn env fdl = List.map (wp_fun_defn env) fdl
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in
  let rec t_iff_bool f1 f2 = match f1.t_node, f2.t_node with
    | Tnot f1, _ -> t_not_simp (t_iff_bool f1 f2)
    | _, Tnot f2 -> t_not_simp (t_iff_bool f1 f2)
    | Tapp (ps1, [t1; { t_node = Tapp (ls1, []) }]),
      Tapp (ps2, [t2; { t_node = Tapp (ls2, []) }])
      when ls_equal ps1 ps_equ && ls_equal ps2 ps_equ &&
           is_bool ls1 && is_bool ls2 ->
        if ls_equal ls1 ls2 then t_equ t1 t2 else t_neq t1 t2
    | _ ->
        t_iff_simp f1 f2
  in
  let rec t_btop t = t_label ?loc:t.t_loc t.t_label (* t_label_copy? *)
    (match t.t_node with
    | Tif (f,t1,t2) ->
        t_if_simp (f_btop f) (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_andb ->
        t_and_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_orb ->
        t_or_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1]) when ls_equal ls ls_notb ->
        t_not_simp (t_btop t1)
    | Tapp (ls, []) when ls_equal ls ls_True ->
        t_true
    | Tapp (ls, []) when ls_equal ls ls_False ->
        t_false
    | _ ->
        t_equ_simp (f_btop t) t_True)
  and f_btop f = match f.t_node with
    | Tapp (ls, [{t_ty = Some {ty_node = Tyapp (ts, [])}} as l; r])
      when ls_equal ls ps_equ && ts_equal ts ts_bool ->
        t_label ?loc:f.t_loc f.t_label (t_iff_bool (t_btop l) (t_btop r))
    | _ ->
        t_map_simp f_btop f
  in
  f_btop f
***)
893

894 895 896
(* replace t_absurd with t_false *)
let rec unabsurd f = match f.t_node with
  | Tapp (ls, []) when ls_equal ls ls_absurd ->
MARCHE Claude's avatar
MARCHE Claude committed
897
      t_label_copy f (t_label_add keep_on_simp_label t_false)
898 899 900
  | _ ->
      t_map unabsurd f

901
let add_wp_decl km name f uc =
902
  (* prepare a proposition symbol *)
Andrei Paskevich's avatar
Andrei Paskevich committed
903
  let s = "WP_parameter " ^ name.id_string in
904
  let lab = Ident.create_label ("expl:VC for " ^ name.id_string) in
905 906 907 908
  let label = Slab.add lab name.id_label in
  let id = id_fresh ~label ?loc:name.id_loc s in
  let pr = create_prsymbol id in
  (* prepare the VC formula *)
909
  let f = remove_at f in
910 911 912
  (* let f = bool_to_prop uc f in *)
  let f = unabsurd f in
  (* get a known map with tuples added *)
913 914 915
  let lkm = Theory.get_known uc in
  (* remove redundant invariants *)
  let f = if Debug.test_flag no_track then f else track_values lkm km f in
916
  (* simplify f *)
917
  let f = if Debug.test_flag no_eval then f else
918 919
    (* do preliminary checks on f to spare eval_match any surprises *)
    let _lkm = Decl.known_add_decl lkm (create_prop_decl Pgoal pr f) in
920
    Eval_match.eval_match ~inline:Eval_match.inline_nonrec_linear lkm f in