blocking_semantics3.mlw 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

23
(** ident for mutable variables *)
24 25
type mident

26 27 28
axiom mident_decide :
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

29
(** ident for immutable variables *)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
type ident = {| ident_index : int |}

(** Terms *)
type term_node =
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term

with term = {| term_node : term_node;
               term_maxvar : int;
             |}

predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
  | {| term_node = Tvalue _ |} -> false
  | {| term_node = Tvar i |} -> x=i
  | {| term_node = Tderef _ |} -> false
  | {| term_node = Tbin t1 _ t2 |} -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
  end

predicate term_inv (t:term) =
  forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar

function mk_tvalue (v:value) : term =
   {| term_node = Tvalue v; term_maxvar = -1 |}

lemma mk_tvalue_inv :
   forall v:value. term_inv (mk_tvalue v)

function mk_tvar (i:ident) : term =
   {| term_node = Tvar i; term_maxvar = i.ident_index |}

lemma mk_tvar_inv :
   forall i:ident. term_inv (mk_tvar i)

function mk_tderef (r:mident) : term =
   {| term_node = Tderef r; term_maxvar = -1 |}

lemma mk_tderef_inv :
   forall r:mident. term_inv (mk_tderef r)

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
   {| term_node = Tbin t1 o t2;
      term_maxvar = max t1.term_maxvar t2.term_maxvar |}

lemma mk_tbin_inv :
   forall t1 t2:term, o:operator. term_inv t1 /\ term_inv t2 ->
     term_inv (mk_tbin t1 o t2)


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

90 91 92 93 94 95 96 97
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
98

99 100 101
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
      forall sigma: type_env, pi:type_stack, v:value, m:int.
	type_term sigma pi {| term_node = Tvalue v; term_maxvar = m |} (type_value v)
  | Type_var :
      forall sigma: type_env, pi:type_stack, v: ident, m:int, ty:datatype.
        (get_vartype v pi = ty) ->
        type_term sigma pi {| term_node = Tvar v ; term_maxvar = m |} ty
  | Type_deref :
      forall sigma: type_env, pi:type_stack, v: mident, m:int, ty:datatype.
        (get_reftype v sigma = ty) ->
        type_term sigma pi {| term_node = Tderef v; term_maxvar = m |} ty
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
        m:int, ty1 ty2 ty:datatype.
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
        type_term sigma pi {| term_node = Tbin t1 op t2; term_maxvar = m |} ty

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

184 185 186 187 188 189 190 191 192 193 194
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
195
	(get_reftype x sigma = ty) ->
196 197 198 199 200 201 202 203 204 205
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
206
	type_fmla sigma pi p ->
207 208 209
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
210
	type_fmla sigma pi inv ->
211 212 213
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
  | {| term_node = Tvalue v |} -> v
  | {| term_node = Tvar id |} -> get_stack id pi
  | {| term_node = Tderef id |} -> get_env id sigma
  | {| term_node = Tbin t1 op t2 |} ->
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
  end

257 258 259 260 261 262 263 264 265

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b


266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tvar _ |} -> t
  | {| term_node = Tderef x |} -> if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
  | {| term_node = Tvalue _ | Tderef _ |} -> t
  | {| term_node = Tvar x |} ->
      if r = x then mk_tvar v else t
  | {| term_node = Tbin t1 op t2 |} ->
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
  id.ident_index > t.term_maxvar

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
306 307 308 309 310
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
	  
311
lemma eval_msubst_term:
312
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
313 314 315 316
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
317 318 319 320 321
(* lemma eval_subst_term: *)
(*   forall sigma:env, pi:stack, e:term, x:ident, v:ident. *)
(*     fresh_in_term v e -> *)
(*     eval_term sigma pi (subst_term e x v) = *)
(*     eval_term sigma (Cons (x, (get_stack v pi)) pi) e *)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
362 363 364 365
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
366

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
367
(* Need it for monotonicity and wp_reduction *)
368 369 370 371 372 373
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
374 375 376 377 378
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
379

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
380 381 382 383 384 385 386 387 388 389 390
lemma eval_swap_term:
  forall t:term, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_term sigma (Cons (id1,v1) (Cons (id2,v2) pi)) t =
    eval_term sigma (Cons (id2,v2) (Cons (id1,v1) pi)) t)

lemma eval_swap:
  forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)
391

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
392 393 394 395
(* lemma eval_same_var: *)
(*   forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value. *)
(*     eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <-> *)
(*     eval_fmla sigma (Cons (id,v1) pi) f *)
396

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
397
 (* Need it for monotonicity*)
398 399 400 401 402
lemma eval_change_free :
  forall f:fmla, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
403
(** [valid_fmla f] is true when [f] is valid in any environment *)
404 405
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

406
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
407 408 409 410 411 412
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
413

414
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
415 416 417 418 419 420 421 422 423 424 425 426
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
427

428 429 430 431 432 433 434 435
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
436 437 438 439 440
  end


(** small-steps semantics for expressions *)

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
456 457

  | one_step_if_true:
458 459 460
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
461 462

  | one_step_if_false:
463 464 465
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
466 467 468 469 470

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
471
          one_step sigma pi (Sassert f) sigma pi Sskip
472

473 474
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
475 476
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
477 478 479 480
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
481
  | one_step_while_false:
482 483 484 485 486
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
487 488 489

 (** many steps of execution *)

490
 inductive many_steps env stack stmt env stack stmt int =
491
   | many_steps_refl:
492
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
493
   | many_steps_trans:
494 495 496 497
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
498

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
499 500 501
lemma steps_non_neg:
  forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
    many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
502

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
503
(* Used by Hoare_logic/seq_rule*)
504
  lemma many_steps_seq:
505 506
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
507
      exists sigma2:env, pi2:stack, n1 n2:int.
508 509
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
510 511
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
512 513 514 515 516
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
517 518 519 520 521


(** {3 Hoare triples} *)

(** partial correctness *)
522
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
523
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
524 525 526
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
527 528

(*** total correctness *)
529
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
530
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
531 532 533
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
562
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
563 564 565
      IdMap.get sigma' y = Vint 42

goal If42 :
566
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
567
      one_step my_sigma my_pi
568 569 570 571 572
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
573 574 575 576 577 578 579 580 581 582 583 584 585 586
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
587
  forall p p' q q':fmla, s:stmt.
588
  valid_fmla (Fimplies p' p) ->
589
  valid_triple p s q ->
590
  valid_fmla (Fimplies q q') ->
591
  valid_triple p' s q'
592

593 594
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
595 596

lemma assign_rule:
597 598 599
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
600 601

lemma seq_rule:
602 603 604
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
605 606

lemma if_rule:
607 608 609 610
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
611 612 613

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
614
  valid_triple p (Sassert f) p
615 616 617

lemma assert_rule_ext:
  forall f p:fmla.
618
  valid_triple (Fimplies f p) (Sassert f) p
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
670 671 672 673 674 675 676
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
677 678
  end

679
  function fresh_from (f:fmla) (s:stmt) : ident
680

681
  (* Need it for monotonicity*)
682 683
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
684

685 686
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
687

688
  function abstract_effects (s:stmt) (f:fmla) : fmla
689

MARCHE Claude's avatar
MARCHE Claude committed
690 691 692 693 694
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
695 696
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
697 698
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
699

700 701 702 703
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
704
        (* asymmetric and *)
705 706 707 708 709 710 711 712 713
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
714 715
        Fand inv
          (abstract_effects body
716 717 718
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
719 720 721

    end

MARCHE Claude's avatar
MARCHE Claude committed
722 723 724 725 726 727
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


728 729
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
730
  (*   fresh_in_stmt id e -> *)
731 732 733
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
734
    forall s:stmt, p q:fmla.
735
      valid_fmla (Fimplies p q)
736
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
737 738 739 740 741 742

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
743 744

  lemma wp_reduction:
745 746
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
747
    forall q:fmla.
748 749
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
750 751

  lemma progress:
752 753 754
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
755
(* useful ?
756
      type_fmla sigmat pit q ->
757
*)
758 759 760 761
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
762 763 764 765 766 767 768 769 770

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)