mlw_wp.ml 21.2 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2010-2012                                               *)
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
(*    Guillaume Melquiond                                                 *)
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Ident
open Ty
open Term
25
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27 28 29 30
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

31 32
let debug = Debug.register_flag "whyml_wp"

33
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
34 35 36 37

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

38 39
let fresh_mark () = create_vsymbol (id_fresh "mark") ty_mark

Andrei Paskevich's avatar
Andrei Paskevich committed
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

let th_mark =
  let uc = create_theory (id_fresh "WP builtins") in
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
  let uc = add_param_decl uc fs_old in
  close_theory uc

let fs_setmark =
  create_lsymbol (id_fresh "set_mark") [] (Some ty_mark)

let e_setmark = e_lapp fs_setmark [] (ity_pur ts_mark [])

let vs_old = create_vsymbol (id_fresh "'old") ty_mark
let vs_now = create_vsymbol (id_fresh "'now") ty_mark
62

63 64
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
65

66
let mk_t_if f = t_if f t_bool_true t_bool_false
67
let to_term t = if t.t_ty = None then mk_t_if t else t
68 69 70 71 72 73 74

(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
let erase_mark lab t = t_subst_single lab (t_var vs_now) t

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
(* replace [at(t,now)] with [t] modulo variable renaming *)
let rec drop_at now m t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs m) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old ->
      assert false
  | Tapp (ls, [e;{t_node = Tvar lab}]) when ls_equal ls fs_at ->
      if vs_equal lab vs_old then assert false else
      if vs_equal lab vs_now then drop_at true m e else
      (* no longer assume that unmarked variables are at mark 'now *)
      t_map (drop_at false m) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let m = Mvs.set_inter m t.t_vars in
      if Mvs.is_empty m then t else
      t_map (drop_at now m) t
  | _ ->
      t_map (drop_at now m) t

94 95 96
(** Specifications *)

let psymbol_spec_t : type_v Wps.t = Wps.create 17
97
let e_apply_spec_t : type_c Wexpr.t = Wexpr.create 17
98

99 100 101
let add_pv_varm pv m = Mid.add pv.pv_vs.vs_name pv.pv_vtv.vtv_vars m
let add_pv_vars pv s = vars_union pv.pv_vtv.vtv_vars s

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
let rec check_spec vty tyv = match vty, tyv with
  | VTvalue _, SpecV _ -> ()
  | VTarrow vta, SpecA (_::(_::_ as pvl), tyc) ->
      assert (eff_is_empty vta.vta_effect);
      check_spec vta.vta_result (SpecA (pvl, tyc))
  | VTarrow vta, SpecA ([_], tyc) ->
      let eff1 = vta.vta_effect in
      let eff2 = tyc.c_effect in
      assert (Sreg.equal eff1.eff_reads  eff2.eff_reads);
      assert (Sreg.equal eff1.eff_writes eff2.eff_writes);
      assert (Sexn.equal eff1.eff_raises eff2.eff_raises);
      assert (Sreg.equal eff1.eff_ghostr eff2.eff_ghostr);
      assert (Sreg.equal eff1.eff_ghostw eff2.eff_ghostw);
      assert (Sexn.equal eff1.eff_ghostx eff2.eff_ghostx);
      check_spec vta.vta_result tyc.c_result
  | _ -> assert false
118

119
let rec filter_v varm vars = function
120 121 122
  | SpecA (pvl, tyc) ->
      let varm = List.fold_right add_pv_varm pvl varm in
      let vars = List.fold_right add_pv_vars pvl vars in
123
      SpecA (pvl, filter_c varm vars tyc)
124 125
  | tyv -> tyv

126 127 128 129 130 131 132 133
and filter_c varm vars tyc =
  let add _ f s = Mvs.set_union f.t_vars s in
  let vss = add () tyc.c_pre tyc.c_post.t_vars in
  let vss = Mexn.fold add tyc.c_xpost vss in
  let check { vs_name = id } _ = if not (Mid.mem id varm) then
    Loc.errorm "Local variable %s escapes from its scope" id.id_string in
  Mvs.iter check vss;
  let result = filter_v varm vars tyc.c_result in
134 135 136
  let effect = eff_filter vars tyc.c_effect in
  { tyc with c_effect = effect; c_result = result }

137
let add_psymbol_spec varm ps tyv =
138
  let vars = Mid.fold (fun _ -> vars_union) varm vars_empty in
139 140 141 142
  let tyv = filter_v varm vars tyv in
  if Debug.test_flag debug then
    Format.eprintf "@[<hov 2>SPEC %a = %a@]@\n"
      Mlw_pretty.print_psty ps Mlw_pretty.print_type_v tyv;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  check_spec (VTarrow ps.ps_vta) tyv; (* TODO: prove and remove *)
  Wps.set psymbol_spec_t ps tyv

(* TODO? move spec_inst and subst to Mlw_expr? *)
let vtv_full_inst sbs vtv =
  vty_value ~ghost:vtv.vtv_ghost (ity_full_inst sbs vtv.vtv_ity)

let pv_full_inst sbs pv =
  create_pvsymbol (id_clone pv.pv_vs.vs_name) (vtv_full_inst sbs pv.pv_vtv)

let rec spec_inst_v sbs tvm vsm = function
  | SpecV vtv ->
      SpecV (vtv_full_inst sbs vtv)
  | SpecA (pvl,tyc) ->
      let add m pv =
        let nv = pv_full_inst sbs pv in
        Mvs.add pv.pv_vs (t_var nv.pv_vs) m, nv in
      let vsm, pvl = Util.map_fold_left add vsm pvl in
      SpecA (pvl, spec_inst_c sbs tvm vsm tyc)

and spec_inst_c sbs tvm vsm tyc =
  let subst = t_ty_subst tvm vsm in {
    c_pre    = subst tyc.c_pre;
    c_effect = eff_full_inst sbs tyc.c_effect;
    c_result = spec_inst_v sbs tvm vsm tyc.c_result;
    c_post   = subst tyc.c_post;
    c_xpost  = Mexn.map subst tyc.c_xpost; }

let rec subst_v pv t = function
  | SpecA (pvl,tyc) when not (List.exists (pv_equal pv) pvl) ->
      SpecA (pvl, subst_c pv t tyc)
  | tyv -> tyv

and subst_c pv t tyc =
  let subst = t_subst (Mvs.singleton pv.pv_vs t) in {
    c_pre    = subst tyc.c_pre;
    c_effect = tyc.c_effect;
    c_result = subst_v pv t tyc.c_result;
    c_post   = subst tyc.c_post;
    c_xpost  = Mexn.map subst tyc.c_xpost; }

184 185 186 187 188 189 190 191 192
let spec_lambda l tyv =
  let tyc = {
    c_pre    = l.l_pre;
    c_effect = l.l_expr.e_effect;
    c_result = tyv;
    c_post   = l.l_post;
    c_xpost  = l.l_xpost } in
  SpecA (l.l_args, tyc)

193
let spec_val vd = match vd.val_name with
194
  | LetA ps -> add_psymbol_spec vd.val_vars ps vd.val_spec
195 196
  | LetV _  -> ()

197 198 199
let rec spec_let { let_var = lv; let_expr = e } = match lv with
  | LetA ps -> add_psymbol_spec e.e_vars ps (spec_expr e)
  | LetV _  -> ignore (spec_expr e)
200

201
and spec_rec rdl =
202 203 204 205 206
  let add_vars m rd = Mid.set_union m rd.rec_vars in
  let vars = List.fold_left add_vars Mid.empty rdl in
  let add_early_spec rd = match rd.rec_lambda.l_expr.e_vty with
    | VTvalue vtv ->
        let tyv = spec_lambda rd.rec_lambda (SpecV vtv) in
207
        add_psymbol_spec rd.rec_vars rd.rec_ps tyv
208 209 210 211 212 213
    | VTarrow _ when Mid.mem rd.rec_ps.ps_name vars ->
        Loc.errorm ?loc:rd.rec_lambda.l_expr.e_loc
          "The body of a recursive function must be a first-order value"
    | VTarrow _ -> () in
  List.iter add_early_spec rdl;
  let add_late_spec rd =
214
    let tyv = spec_expr rd.rec_lambda.l_expr in
215 216 217
    match rd.rec_lambda.l_expr.e_vty with
    | VTarrow _ ->
        let tyv = spec_lambda rd.rec_lambda tyv in
218
        add_psymbol_spec rd.rec_vars rd.rec_ps tyv
219 220 221
    | VTvalue _ -> () in
  List.iter add_late_spec rdl

222
and spec_expr e = match e.e_node with
223 224 225 226
  | Elogic _
  | Eassert _
  | Eabsurd -> SpecV (vtv_of_expr e)
  | Evalue pv -> SpecV pv.pv_vtv
227 228 229 230
  | Earrow ps ->
    (* TODO: a ps may not be in the table, if it comes from a module
       for which we never computed WPs. Pass the known_map to spec_expr
       and compute it now. *)
231
      let sbs = vta_vars_match ps.ps_subst ps.ps_vta (vta_of_expr e) in
232 233 234 235
      let tvm = Mtv.map ty_of_ity sbs.ity_subst_tv in
      let tyv = Wps.find psymbol_spec_t ps in
      spec_inst_v sbs tvm Mvs.empty tyv
  | Eapp (e1,pv) ->
236 237
      let tyv = spec_expr e1 in
      let t = t_var pv.pv_vs in
238 239 240 241 242 243 244 245 246 247 248 249
      begin match tyv with
        | SpecA ([pv],tyc) ->
            let tyc = subst_c pv t tyc in
            (* we will use this for WP *)
            Wexpr.set e_apply_spec_t e tyc;
            tyc.c_result
        | SpecA (pv::pvl,tyc) ->
            (* pv cannot occur in pvl *)
            SpecA (pvl, subst_c pv t tyc)
        | _ -> assert false
      end
  | Elet (ld,e1) ->
250 251
      spec_let ld;
      spec_expr e1
252
  | Erec (rdl,e1) ->
253 254 255
      spec_rec rdl;
      spec_expr e1
  | Eghost e1 -> spec_expr e1
256 257 258 259 260 261
  | Eany tyc -> tyc.c_result
  | Eassign (e1,_,_)
  | Eloop (_,_,e1)
  | Efor (_,_,_,e1)
  | Eraise (_,e1)
  | Eabstr (e1,_,_) ->
262
      ignore (spec_expr e1);
263 264
      SpecV (vtv_of_expr e)
  | Eif (e1,e2,e3) ->
265 266 267
      ignore (spec_expr e1);
      ignore (spec_expr e2);
      spec_expr e3
268
  | Ecase (e1,bl) ->
269 270
      ignore (spec_expr e1);
      List.iter (fun (_,e) -> ignore (spec_expr e)) bl;
271 272
      SpecV (vtv_of_expr e)
  | Etry (e1,bl) ->
273 274
      ignore (spec_expr e1);
      List.iter (fun (_,_,e) -> ignore (spec_expr e)) bl;
275 276
      SpecV (vtv_of_expr e)

277
(** WP utilities *)
278 279 280 281 282 283 284 285 286 287 288

let ty_of_vty = function
  | VTvalue vtv -> ty_of_ity vtv.vtv_ity
  | VTarrow _   -> ty_unit

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
289
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
290

291 292 293 294 295 296 297 298 299 300
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

let wp_expl l f =
  let lab = Slab.add Split_goal.stop_split f.t_label in
  let lab = Slab.add (Ident.create_label ("expl:" ^ l)) lab in
  t_label ?loc:f.t_loc lab f

301
let wp_and ~sym f1 f2 =
302 303
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

304
let wp_ands ~sym fl =
305 306
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

307
let wp_implies f1 f2 = t_implies_simp f1 f2
308

309 310 311 312
let wp_forall vl f = t_forall_close_simp vl [] f

let wp_let v t f = t_let_close_simp v t f

313
(* TODO: put this into abstract/opaque wp, it's only relevant there *)
314 315
(*
match f.t_node with
316 317 318 319 320 321 322 323 324 325 326
  | Tbinop (Timplies, {t_node = Tapp (s,[{t_node = Tvar u};r])},h)
    when ls_equal s ps_equ && vs_equal u v && not (Mvs.mem v r.t_vars) ->
      t_let_close_simp v r h
  | Tbinop (Timplies, {t_node = Tbinop (Tand, g,
                      {t_node = Tapp (s,[{t_node = Tvar u};r])})},h)
    when ls_equal s ps_equ && vs_equal u v && not (Mvs.mem v r.t_vars) ->
      t_let_close_simp v r (t_implies_simp g h)
  | _ when Mvs.mem v f.t_vars ->
      t_forall_close_simp [v] [] f
  | _ ->
      f
327
*)
328

329 330 331 332 333 334 335
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
}
336

337 338
(** Reconstruct pure values after writes *)

339
let find_constructors env sts ity = match ity.ity_node with
340 341 342
  | Itypur (ts,_) ->
      let base = ity_pur ts (List.map ity_var ts.ts_args) in
      let sbs = ity_match ity_subst_empty base ity in
343
      let csl = Decl.find_constructors env.pure_known ts in
344 345 346 347 348 349 350 351
      if csl = [] || Sts.mem ts sts then Loc.errorm
        "Cannot update values of type %a" Mlw_pretty.print_ity base;
      let subst ty = ity_full_inst sbs (ity_of_ty ty), None in
      let cnstr (cs,_) = cs, List.map subst cs.ls_args in
      Sts.add ts sts, List.map cnstr csl
  | Ityapp (its,_,_) ->
      let base = ity_app its (List.map ity_var its.its_args) its.its_regs in
      let sbs = ity_match ity_subst_empty base ity in
352
      let csl = Mlw_decl.find_constructors env.prog_known its in
353 354 355 356 357 358 359 360 361
      if csl = [] || Sts.mem its.its_pure sts then Loc.errorm
        "Cannot update values of type %a" Mlw_pretty.print_ity base;
      let subst vtv =
        ity_full_inst sbs vtv.vtv_ity,
        Util.option_map (reg_full_inst sbs) vtv.vtv_mut in
      let cnstr (cs,_) = cs.pl_ls, List.map subst cs.pl_args in
      Sts.add its.its_pure sts, List.map cnstr csl
  | Ityvar _ -> assert false

362
let update_var env mreg vs =
363 364 365 366 367 368 369 370 371
  let rec update sts vs ity mut =
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
    let vs = Util.option_apply vs get_vs mut in
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
    if ity_pure ity || not (Mreg.exists check_reg mreg) then
      t_var vs
    else
372
      let sts, csl = find_constructors env sts ity in
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
      let branch (cs,ityl) =
        let mk_var (ity,_) = create_vsymbol (id_fresh "y") (ty_of_ity ity) in
        let vars = List.map mk_var ityl in
        let pat = pat_app cs (List.map pat_var vars) vs.vs_ty in
        let mk_arg vs (ity, mut) = update sts vs ity mut in
        let t = fs_app cs (List.map2 mk_arg vars ityl) vs.vs_ty in
        t_close_branch pat t in
      t_case (t_var vs) (List.map branch csl)
  in
  let vtv = (restore_pv vs).pv_vtv in
  update Sts.empty vs vtv.vtv_ity vtv.vtv_mut

(* quantify over all references in eff
   eff : effect
   f   : formula

   let eff = { rho1, ..., rhon }
   we collect in vars all variables involving these regions
   let vars = { v1, ..., vm }

     forall r1:ty(rho1). ... forall rn:ty(rhon).
     let v'1 = update v1 r1...rn in
     ...
     let v'm = update vm r1...rn in
     f[vi <- v'i]
*)

let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

404 405
let quantify env regs f =
  (* mreg : updated region -> vs *)
406 407 408 409 410 411 412 413
  let get_var reg () =
    let test vs _ id = match (restore_pv vs).pv_vtv with
      | { vtv_ity = { ity_node = Ityapp (_,_,[r]) }}
      | { vtv_mut = Some r } when reg_equal r reg -> vs.vs_name
      | _ -> id in
    let id = Mvs.fold test f.t_vars reg.reg_name in
    mk_var id model1_lab (ty_of_ity reg.reg_ity)
  in
414
  let mreg = Mreg.mapi get_var regs in
415
  (* update all program variables involving these regions *)
416
  let update_var vs _ = match update_var env mreg vs with
417 418 419 420 421 422 423
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
  let vars = Mvs.mapi_filter update_var f.t_vars in
  (* vv' : old vs -> new vs *)
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
  (* quantify *)
424
  let update v t f = wp_let (Mvs.find v vv') t f in
425
  let f = Mvs.fold update vars (drop_at true vv' f) in
426
  wp_forall (Mreg.values mreg) f
427 428 429

(** Weakest preconditions *)

430 431 432
let regs_of_reads  eff = Sreg.union eff.eff_reads eff.eff_ghostr
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
let regs_of_effect eff = Sreg.union (regs_of_reads eff) (regs_of_writes eff)
433

434 435 436 437 438 439
let t_void = fs_app (fs_tuple 0) [] ty_unit

let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

440
let rec wp_expr env e q xq =
441 442 443
  let lab = fresh_mark () in
  let q = old_mark lab q in
  let xq = Mexn.map (old_mark lab) xq in
444
  let f = wp_desc env e q xq in
445 446
  let f = erase_mark lab f in
  if Debug.test_flag debug then begin
447
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
448 449 450
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
451
  f
452

453
and wp_desc env e q xq = match e.e_node with
454 455 456
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
457
      t_subst_single v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
458 459 460
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
461
      t_subst_single v t q
462 463 464
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
Andrei Paskevich's avatar
Andrei Paskevich committed
465
  | Erec (rdl, e) ->
466 467 468
      let fr = wp_rec_defn env rdl in
      let fe = wp_expr env e q xq in
      wp_and ~sym:true (wp_ands ~sym:true fr) fe
469 470 471 472 473 474 475 476 477 478 479
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
      let f = wp_expl "assertion" f in
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
      let f = wp_expl "check" f in
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
480
  | Eabsurd ->
481 482
      wp_label e t_absurd

483 484 485 486 487 488 489 490 491 492 493 494 495
  (* TODO *)
  |Eabstr (_, _, _)-> t_true
  |Etry (_, _)-> t_true
  |Eraise (_, _)-> t_true
  |Efor (_, _, _, _)-> t_true
  |Eloop (_, _, _)-> t_true
  |Eany _-> t_true
  |Eghost _-> t_true
  |Eassign (_, _, _)-> t_true
  |Ecase (_, _)-> t_true
  |Eif (_, _, _)-> t_true
  |Elet (_, _)-> t_true
  |Eapp (_, _)-> t_true
496

497
and wp_lambda env l =
498 499
  let q = wp_expl "normal postcondition" l.l_post in
  let xq = Mexn.map (wp_expl "exceptional postcondition") l.l_xpost in
500
  let f = wp_expr env l.l_expr q xq in
501
  let f = wp_implies l.l_pre f in
502
  let f = quantify env (regs_of_effect l.l_expr.e_effect) f in
503
  wp_forall (List.map (fun pv -> pv.pv_vs) l.l_args) f
504

505 506
and wp_rec_defn env rdl =
  List.map (fun rd -> wp_lambda env rd.rec_lambda) rdl
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in
  let rec t_iff_bool f1 f2 = match f1.t_node, f2.t_node with
    | Tnot f1, _ -> t_not_simp (t_iff_bool f1 f2)
    | _, Tnot f2 -> t_not_simp (t_iff_bool f1 f2)
    | Tapp (ps1, [t1; { t_node = Tapp (ls1, []) }]),
      Tapp (ps2, [t2; { t_node = Tapp (ls2, []) }])
      when ls_equal ps1 ps_equ && ls_equal ps2 ps_equ &&
           is_bool ls1 && is_bool ls2 ->
        if ls_equal ls1 ls2 then t_equ t1 t2 else t_neq t1 t2
    | _ ->
        t_iff_simp f1 f2
  in
  let rec t_btop t = t_label ?loc:t.t_loc t.t_label (* t_label_copy? *)
    (match t.t_node with
    | Tif (f,t1,t2) ->
        t_if_simp (f_btop f) (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_andb ->
        t_and_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_orb ->
        t_or_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1]) when ls_equal ls ls_notb ->
        t_not_simp (t_btop t1)
    | Tapp (ls, []) when ls_equal ls ls_True ->
        t_true
    | Tapp (ls, []) when ls_equal ls ls_False ->
        t_false
    | _ ->
        t_equ_simp (f_btop t) t_True)
  and f_btop f = match f.t_node with
    | Tapp (ls, [{t_ty = Some {ty_node = Tyapp (ts, [])}} as l; r])
      when ls_equal ls ps_equ && ts_equal ts ts_bool ->
        t_label ?loc:f.t_loc f.t_label (t_iff_bool (t_btop l) (t_btop r))
    | _ ->
        t_map_simp f_btop f
  in
  f_btop f
***)
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t;{t_node = Tvar lab}])
    when ls_equal ls fs_at && vs_equal lab vs_now ->
      remove_at t
  | _ ->
      t_map remove_at f

(* replace t_absurd with t_false *)
let rec unabsurd f = match f.t_node with
  | Tapp (ls, []) when ls_equal ls ls_absurd ->
      t_label_copy f t_false
  | _ ->
      t_map unabsurd f

let add_wp_decl name f uc =
  (* prepare a proposition symbol *)
  let s = "WP_" ^ name.id_string in
  let lab = Ident.create_label ("expl:" ^ name.id_string) in
  let label = Slab.add lab name.id_label in
  let id = id_fresh ~label ?loc:name.id_loc s in
  let pr = create_prsymbol id in
  (* prepare the VC formula *)
  let f = remove_at f in
  (* let f = bool_to_prop uc f in *)
  let f = unabsurd f in
  (* get a known map with tuples added *)
  let km = Theory.get_known uc in
  (* simplify f *)
  let f = Eval_match.eval_match ~inline:Eval_match.inline_nonrec_linear km f in
  (* printf "wp: f=%a@." print_term f; *)
  let d = create_prop_decl Pgoal pr f in
  Theory.add_decl uc d

589 590 591 592 593 594
let mk_env env km th = {
  prog_known = km;
  pure_known = Theory.get_known th;
  global_env = env;
}

595
let wp_let env km th ({ let_var = lv; let_expr = e } as ld) =
596
  spec_let ld;
597 598
  let env = mk_env env km th in
  let q, xq = default_post e.e_vty e.e_effect in
599
  let f = wp_expr env e q xq in
600 601 602 603
  let f = wp_forall (Mvs.keys f.t_vars) f in
  let id = match lv with
    | LetV pv -> pv.pv_vs.vs_name
    | LetA ps -> ps.ps_name in
604 605
  add_wp_decl id f th

606
let wp_rec env km th rdl =
607
  spec_rec rdl;
608
  let env = mk_env env km th in
609 610
  let fl = wp_rec_defn env rdl in
  let add_one th d f =
611
    Debug.dprintf debug "wp %s = %a@\n----------------@."
612 613
      d.rec_ps.ps_name.id_string Pretty.print_term f;
    add_wp_decl d.rec_ps.ps_name f th
614 615
  in
  List.fold_left2 add_one th rdl fl
616

617
let wp_val _env _km th vd = spec_val vd; th