Attention une mise à jour du service Gitlab va être effectuée le mardi 30 novembre entre 17h30 et 18h00. Cette mise à jour va générer une interruption du service dont nous ne maîtrisons pas complètement la durée mais qui ne devrait pas excéder quelques minutes. Cette mise à jour intermédiaire en version 14.0.12 nous permettra de rapidement pouvoir mettre à votre disposition une version plus récente.

wp2_WP_WP_WP_parameter_wp_2.v 15.8 KB
Newer Older
MARCHE Claude's avatar
MARCHE Claude committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import ZArith.
Require Import Rbase.
Require int.Int.

(* Why3 assumption *)
Definition unit  := unit.

Parameter qtmark : Type.

Parameter at1: forall (a:Type), a -> qtmark -> a.
Implicit Arguments at1.

Parameter old: forall (a:Type), a -> a.
Implicit Arguments old.

(* Why3 assumption *)
Definition implb(x:bool) (y:bool): bool := match (x,
  y) with
  | (true, false) => false
  | (_, _) => true
  end.

(* Why3 assumption *)
Inductive datatype  :=
  | Tint : datatype 
  | Tbool : datatype .

(* Why3 assumption *)
Inductive operator  :=
  | Oplus : operator 
  | Ominus : operator 
  | Omult : operator 
  | Ole : operator .

(* Why3 assumption *)
Definition ident  := Z.

(* Why3 assumption *)
Inductive term  :=
  | Tconst : Z -> term 
  | Tvar : Z -> term 
  | Tderef : Z -> term 
  | Tbin : term -> operator -> term -> term .

(* Why3 assumption *)
Inductive fmla  :=
  | Fterm : term -> fmla 
  | Fand : fmla -> fmla -> fmla 
  | Fnot : fmla -> fmla 
  | Fimplies : fmla -> fmla -> fmla 
  | Flet : Z -> term -> fmla -> fmla 
  | Fforall : Z -> datatype -> fmla -> fmla .

(* Why3 assumption *)
Inductive value  :=
  | Vint : Z -> value 
  | Vbool : bool -> value .

Parameter map : forall (a:Type) (b:Type), Type.

Parameter get: forall (a:Type) (b:Type), (map a b) -> a -> b.
Implicit Arguments get.

Parameter set: forall (a:Type) (b:Type), (map a b) -> a -> b -> (map a b).
Implicit Arguments set.

Axiom Select_eq : forall (a:Type) (b:Type), forall (m:(map a b)),
  forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1)
  a2) = b1).

Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)),
  forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1)
  a2) = (get m a2)).

Parameter const: forall (b:Type) (a:Type), b -> (map a b).
Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.

Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a),
  ((get (const b1:(map a b)) a1) = b1).

(* Why3 assumption *)
Definition env  := (map Z value).

Parameter eval_bin: value -> operator -> value -> value.

Axiom eval_bin_def : forall (x:value) (op:operator) (y:value), match (x,
  y) with
  | ((Vint x1), (Vint y1)) =>
      match op with
      | Oplus => ((eval_bin x op y) = (Vint (x1 + y1)%Z))
      | Ominus => ((eval_bin x op y) = (Vint (x1 - y1)%Z))
      | Omult => ((eval_bin x op y) = (Vint (x1 * y1)%Z))
      | Ole => ((x1 <= y1)%Z -> ((eval_bin x op y) = (Vbool true))) /\
          ((~ (x1 <= y1)%Z) -> ((eval_bin x op y) = (Vbool false)))
      end
  | (_, _) => ((eval_bin x op y) = (Vbool false))
  end.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint eval_term(sigma:(map Z value)) (pi:(map Z value))
  (t:term) {struct t}: value :=
  match t with
  | (Tconst n) => (Vint n)
  | (Tvar id) => (get pi id)
  | (Tderef id) => (get sigma id)
  | (Tbin t1 op t2) => (eval_bin (eval_term sigma pi t1) op (eval_term sigma
      pi t2))
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint eval_fmla(sigma:(map Z value)) (pi:(map Z value))
  (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm t) => ((eval_term sigma pi t) = (Vbool true))
  | (Fand f1 f2) => (eval_fmla sigma pi f1) /\ (eval_fmla sigma pi f2)
  | (Fnot f1) => ~ (eval_fmla sigma pi f1)
  | (Fimplies f1 f2) => (eval_fmla sigma pi f1) -> (eval_fmla sigma pi f2)
  | (Flet x t f1) => (eval_fmla sigma (set pi x (eval_term sigma pi t)) f1)
  | (Fforall x Tint f1) => forall (n:Z), (eval_fmla sigma (set pi x (Vint n))
      f1)
  | (Fforall x Tbool f1) => forall (b:bool), (eval_fmla sigma (set pi x
      (Vbool b)) f1)
  end.
Unset Implicit Arguments.

Parameter subst_term: term -> Z -> Z -> term.

Axiom subst_term_def : forall (e:term) (r:Z) (v:Z),
  match e with
  | (Tconst _) => ((subst_term e r v) = e)
  | (Tvar _) => ((subst_term e r v) = e)
  | (Tderef x) => ((r = x) -> ((subst_term e r v) = (Tvar v))) /\
      ((~ (r = x)) -> ((subst_term e r v) = e))
  | (Tbin e1 op e2) => ((subst_term e r v) = (Tbin (subst_term e1 r v) op
      (subst_term e2 r v)))
  end.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint fresh_in_term(id:Z) (t:term) {struct t}: Prop :=
  match t with
  | (Tconst _) => True
  | (Tvar v) => ~ (id = v)
  | (Tderef _) => True
  | (Tbin t1 _ t2) => (fresh_in_term id t1) /\ (fresh_in_term id t2)
  end.
Unset Implicit Arguments.

Axiom eval_subst_term : forall (sigma:(map Z value)) (pi:(map Z value))
  (e:term) (x:Z) (v:Z), (fresh_in_term v e) -> ((eval_term sigma pi
  (subst_term e x v)) = (eval_term (set sigma x (get pi v)) pi e)).

Axiom eval_term_change_free : forall (t:term) (sigma:(map Z value)) (pi:(map
  Z value)) (id:Z) (v:value), (fresh_in_term id t) -> ((eval_term sigma
  (set pi id v) t) = (eval_term sigma pi t)).

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint fresh_in_fmla(id:Z) (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm e) => (fresh_in_term id e)
  | ((Fand f1 f2)|(Fimplies f1 f2)) => (fresh_in_fmla id f1) /\
      (fresh_in_fmla id f2)
  | (Fnot f1) => (fresh_in_fmla id f1)
  | (Flet y t f1) => (~ (id = y)) /\ ((fresh_in_term id t) /\
      (fresh_in_fmla id f1))
  | (Fforall y ty f1) => (~ (id = y)) /\ (fresh_in_fmla id f1)
  end.
Unset Implicit Arguments.

(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint subst(f:fmla) (x:Z) (v:Z) {struct f}: fmla :=
  match f with
  | (Fterm e) => (Fterm (subst_term e x v))
  | (Fand f1 f2) => (Fand (subst f1 x v) (subst f2 x v))
  | (Fnot f1) => (Fnot (subst f1 x v))
  | (Fimplies f1 f2) => (Fimplies (subst f1 x v) (subst f2 x v))
  | (Flet y t f1) => (Flet y t (subst f1 x v))
  | (Fforall y ty f1) => (Fforall y ty (subst f1 x v))
  end.
Unset Implicit Arguments.

Axiom eval_subst : forall (f:fmla) (sigma:(map Z value)) (pi:(map Z value))
  (x:Z) (v:Z), (fresh_in_fmla v f) -> ((eval_fmla sigma pi (subst f x v)) <->
  (eval_fmla (set sigma x (get pi v)) pi f)).

Axiom eval_swap : forall (f:fmla) (sigma:(map Z value)) (pi:(map Z value))
  (id1:Z) (id2:Z) (v1:value) (v2:value), (~ (id1 = id2)) -> ((eval_fmla sigma
  (set (set pi id1 v1) id2 v2) f) <-> (eval_fmla sigma (set (set pi id2 v2)
  id1 v1) f)).

Axiom eval_change_free : forall (f:fmla) (sigma:(map Z value)) (pi:(map Z
  value)) (id:Z) (v:value), (fresh_in_fmla id f) -> ((eval_fmla sigma (set pi
  id v) f) <-> (eval_fmla sigma pi f)).

(* Why3 assumption *)
Inductive stmt  :=
  | Sskip : stmt 
  | Sassign : Z -> term -> stmt 
  | Sseq : stmt -> stmt -> stmt 
  | Sif : term -> stmt -> stmt -> stmt 
  | Sassert : fmla -> stmt 
  | Swhile : term -> fmla -> stmt -> stmt .

Axiom check_skip : forall (s:stmt), (s = Sskip) \/ ~ (s = Sskip).

(* Why3 assumption *)
Inductive one_step : (map Z value) -> (map Z value) -> stmt -> (map Z value)
  -> (map Z value) -> stmt -> Prop :=
  | one_step_assign : forall (sigma:(map Z value)) (pi:(map Z value)) (x:Z)
      (e:term), (one_step sigma pi (Sassign x e) (set sigma x
      (eval_term sigma pi e)) pi Sskip)
  | one_step_seq : forall (sigma:(map Z value)) (pi:(map Z value))
      (sigmaqt:(map Z value)) (piqt:(map Z value)) (i1:stmt) (i1qt:stmt)
      (i2:stmt), (one_step sigma pi i1 sigmaqt piqt i1qt) -> (one_step sigma
      pi (Sseq i1 i2) sigmaqt piqt (Sseq i1qt i2))
  | one_step_seq_skip : forall (sigma:(map Z value)) (pi:(map Z value))
      (i:stmt), (one_step sigma pi (Sseq Sskip i) sigma pi i)
  | one_step_if_true : forall (sigma:(map Z value)) (pi:(map Z value))
      (e:term) (i1:stmt) (i2:stmt), ((eval_term sigma pi
      e) = (Vbool true)) -> (one_step sigma pi (Sif e i1 i2) sigma pi i1)
  | one_step_if_false : forall (sigma:(map Z value)) (pi:(map Z value))
      (e:term) (i1:stmt) (i2:stmt), ((eval_term sigma pi
      e) = (Vbool false)) -> (one_step sigma pi (Sif e i1 i2) sigma pi i2)
  | one_step_assert : forall (sigma:(map Z value)) (pi:(map Z value))
      (f:fmla), (eval_fmla sigma pi f) -> (one_step sigma pi (Sassert f)
      sigma pi Sskip)
  | one_step_while_true : forall (sigma:(map Z value)) (pi:(map Z value))
      (e:term) (inv:fmla) (i:stmt), (eval_fmla sigma pi inv) ->
      (((eval_term sigma pi e) = (Vbool true)) -> (one_step sigma pi
      (Swhile e inv i) sigma pi (Sseq i (Swhile e inv i))))
  | one_step_while_false : forall (sigma:(map Z value)) (pi:(map Z value))
      (e:term) (inv:fmla) (i:stmt), (eval_fmla sigma pi inv) ->
      (((eval_term sigma pi e) = (Vbool false)) -> (one_step sigma pi
      (Swhile e inv i) sigma pi Sskip)).

(* Why3 assumption *)
Inductive many_steps : (map Z value) -> (map Z value) -> stmt -> (map Z
  value) -> (map Z value) -> stmt -> Z -> Prop :=
  | many_steps_refl : forall (sigma:(map Z value)) (pi:(map Z value))
      (i:stmt), (many_steps sigma pi i sigma pi i 0%Z)
  | many_steps_trans : forall (sigma1:(map Z value)) (pi1:(map Z value))
      (sigma2:(map Z value)) (pi2:(map Z value)) (sigma3:(map Z value))
      (pi3:(map Z value)) (i1:stmt) (i2:stmt) (i3:stmt) (n:Z),
      (one_step sigma1 pi1 i1 sigma2 pi2 i2) -> ((many_steps sigma2 pi2 i2
      sigma3 pi3 i3 n) -> (many_steps sigma1 pi1 i1 sigma3 pi3 i3
      (n + 1%Z)%Z)).

Axiom steps_non_neg : forall (sigma1:(map Z value)) (pi1:(map Z value))
  (sigma2:(map Z value)) (pi2:(map Z value)) (i1:stmt) (i2:stmt) (n:Z),
  (many_steps sigma1 pi1 i1 sigma2 pi2 i2 n) -> (0%Z <= n)%Z.

Axiom many_steps_seq : forall (sigma1:(map Z value)) (pi1:(map Z value))
  (sigma3:(map Z value)) (pi3:(map Z value)) (i1:stmt) (i2:stmt) (n:Z),
  (many_steps sigma1 pi1 (Sseq i1 i2) sigma3 pi3 Sskip n) ->
  exists sigma2:(map Z value), exists pi2:(map Z value), exists n1:Z,
  exists n2:Z, (many_steps sigma1 pi1 i1 sigma2 pi2 Sskip n1) /\
  ((many_steps sigma2 pi2 i2 sigma3 pi3 Sskip n2) /\
  (n = ((1%Z + n1)%Z + n2)%Z)).

(* Why3 assumption *)
Definition valid_fmla(p:fmla): Prop := forall (sigma:(map Z value)) (pi:(map
  Z value)), (eval_fmla sigma pi p).

(* Why3 assumption *)
Definition valid_triple(p:fmla) (i:stmt) (q:fmla): Prop := forall (sigma:(map
  Z value)) (pi:(map Z value)), (eval_fmla sigma pi p) ->
  forall (sigmaqt:(map Z value)) (piqt:(map Z value)) (n:Z),
  (many_steps sigma pi i sigmaqt piqt Sskip n) -> (eval_fmla sigmaqt piqt q).

Axiom skip_rule : forall (q:fmla), (valid_triple q Sskip q).

Axiom assign_rule : forall (q:fmla) (x:Z) (id:Z) (e:term), (fresh_in_fmla id
  q) -> (valid_triple (Flet id e (subst q x id)) (Sassign x e) q).

Axiom seq_rule : forall (p:fmla) (q:fmla) (r:fmla) (i1:stmt) (i2:stmt),
  ((valid_triple p i1 r) /\ (valid_triple r i2 q)) -> (valid_triple p
  (Sseq i1 i2) q).

Axiom if_rule : forall (e:term) (p:fmla) (q:fmla) (i1:stmt) (i2:stmt),
  ((valid_triple (Fand p (Fterm e)) i1 q) /\ (valid_triple (Fand p
  (Fnot (Fterm e))) i2 q)) -> (valid_triple p (Sif e i1 i2) q).

Axiom assert_rule : forall (f:fmla) (p:fmla), (valid_fmla (Fimplies p f)) ->
  (valid_triple p (Sassert f) p).

Axiom assert_rule_ext : forall (f:fmla) (p:fmla), (valid_triple (Fimplies f
  p) (Sassert f) p).

Axiom while_rule : forall (e:term) (inv:fmla) (i:stmt),
  (valid_triple (Fand (Fterm e) inv) i inv) -> (valid_triple inv (Swhile e
  inv i) (Fand (Fnot (Fterm e)) inv)).

Axiom while_rule_ext : forall (e:term) (inv:fmla) (invqt:fmla) (i:stmt),
  (valid_fmla (Fimplies invqt inv)) -> ((valid_triple (Fand (Fterm e) invqt)
  i invqt) -> (valid_triple invqt (Swhile e inv i) (Fand (Fnot (Fterm e))
  invqt))).

Axiom consequence_rule : forall (p:fmla) (pqt:fmla) (q:fmla) (qqt:fmla)
  (i:stmt), (valid_fmla (Fimplies pqt p)) -> ((valid_triple p i q) ->
  ((valid_fmla (Fimplies q qqt)) -> (valid_triple pqt i qqt))).

Parameter set1 : forall (a:Type), Type.

Parameter mem: forall (a:Type), a -> (set1 a) -> Prop.
Implicit Arguments mem.

(* Why3 assumption *)
Definition infix_eqeq (a:Type)(s1:(set1 a)) (s2:(set1 a)): Prop :=
  forall (x:a), (mem x s1) <-> (mem x s2).
Implicit Arguments infix_eqeq.

Axiom extensionality : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)),
  (infix_eqeq s1 s2) -> (s1 = s2).

(* Why3 assumption *)
Definition subset (a:Type)(s1:(set1 a)) (s2:(set1 a)): Prop := forall (x:a),
  (mem x s1) -> (mem x s2).
Implicit Arguments subset.

Axiom subset_trans : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a))
  (s3:(set1 a)), (subset s1 s2) -> ((subset s2 s3) -> (subset s1 s3)).

Parameter empty: forall (a:Type), (set1 a).
Set Contextual Implicit.
Implicit Arguments empty.
Unset Contextual Implicit.

(* Why3 assumption *)
Definition is_empty (a:Type)(s:(set1 a)): Prop := forall (x:a), ~ (mem x s).
Implicit Arguments is_empty.

Axiom empty_def1 : forall (a:Type), (is_empty (empty :(set1 a))).

Parameter add: forall (a:Type), a -> (set1 a) -> (set1 a).
Implicit Arguments add.

Axiom add_def1 : forall (a:Type), forall (x:a) (y:a), forall (s:(set1 a)),
  (mem x (add y s)) <-> ((x = y) \/ (mem x s)).

Parameter remove: forall (a:Type), a -> (set1 a) -> (set1 a).
Implicit Arguments remove.

Axiom remove_def1 : forall (a:Type), forall (x:a) (y:a) (s:(set1 a)), (mem x
  (remove y s)) <-> ((~ (x = y)) /\ (mem x s)).

Axiom subset_remove : forall (a:Type), forall (x:a) (s:(set1 a)),
  (subset (remove x s) s).

Parameter union: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments union.

Axiom union_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (union s1 s2)) <-> ((mem x s1) \/ (mem x s2)).

Parameter inter: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments inter.

Axiom inter_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (inter s1 s2)) <-> ((mem x s1) /\ (mem x s2)).

Parameter diff: forall (a:Type), (set1 a) -> (set1 a) -> (set1 a).
Implicit Arguments diff.

Axiom diff_def1 : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)) (x:a),
  (mem x (diff s1 s2)) <-> ((mem x s1) /\ ~ (mem x s2)).

Axiom subset_diff : forall (a:Type), forall (s1:(set1 a)) (s2:(set1 a)),
  (subset (diff s1 s2) s1).

Parameter all: forall (a:Type), (set1 a).
Set Contextual Implicit.
Implicit Arguments all.
Unset Contextual Implicit.

Axiom all_def : forall (a:Type), forall (x:a), (mem x (all :(set1 a))).

(* Why3 assumption *)
Definition assigns(sigma:(map Z value)) (a:(set1 Z)) (sigmaqt:(map Z
  value)): Prop := forall (i:Z), (~ (mem i a)) -> ((get sigma
  i) = (get sigmaqt i)).

MARCHE Claude's avatar
MARCHE Claude committed
391 392
Axiom assigns_refl : forall (sigma:(map Z value)) (a:(set1 Z)),
  (assigns sigma a sigma).
MARCHE Claude's avatar
MARCHE Claude committed
393 394 395 396 397 398 399 400 401 402 403 404 405

Axiom assigns_trans : forall (sigma1:(map Z value)) (sigma2:(map Z value))
  (sigma3:(map Z value)) (a:(set1 Z)), ((assigns sigma1 a sigma2) /\
  (assigns sigma2 a sigma3)) -> (assigns sigma1 a sigma3).

Axiom assigns_union_left : forall (sigma:(map Z value)) (sigmaqt:(map Z
  value)) (s1:(set1 Z)) (s2:(set1 Z)), (assigns sigma s1 sigmaqt) ->
  (assigns sigma (union s1 s2) sigmaqt).

Axiom assigns_union_right : forall (sigma:(map Z value)) (sigmaqt:(map Z
  value)) (s1:(set1 Z)) (s2:(set1 Z)), (assigns sigma s2 sigmaqt) ->
  (assigns sigma (union s1 s2) sigmaqt).

MARCHE Claude's avatar
MARCHE Claude committed
406 407 408 409 410 411 412 413 414 415 416
(* Why3 assumption *)
Set Implicit Arguments.
Fixpoint stmt_writes(i:stmt) (w:(set1 Z)) {struct i}: Prop :=
  match i with
  | (Sskip|(Sassert _)) => True
  | (Sassign id _) => (mem id w)
  | ((Sseq s1 s2)|(Sif _ s1 s2)) => (stmt_writes s1 w) /\ (stmt_writes s2 w)
  | (Swhile _ _ s) => (stmt_writes s w)
  end.
Unset Implicit Arguments.

MARCHE Claude's avatar
MARCHE Claude committed
417 418 419 420 421 422 423 424 425
(* Why3 goal *)
Theorem WP_parameter_wp : forall (i:stmt), forall (q:fmla),
  match i with
  | Sskip => True
  | (Sseq i1 i2) => True
  | (Sassign x e) => True
  | (Sif e i1 i2) => True
  | (Sassert f) => True
  | (Swhile e inv i1) => forall (result:fmla), (valid_triple result i1
MARCHE Claude's avatar
MARCHE Claude committed
426 427 428 429 430 431 432 433
      inv) -> forall (result1:fmla), (forall (sigma:(map Z value)) (pi:(map Z
      value)) (sigmaqt:(map Z value)) (piqt:(map Z value)) (w:(set1 Z)),
      ((eval_fmla sigma pi (Fand (Fimplies (Fand (Fterm e) inv) result)
      (Fimplies (Fand (Fnot (Fterm e)) inv) q))) /\ ((stmt_writes i1 w) /\
      (assigns sigma w sigmaqt))) -> (eval_fmla sigmaqt piqt
      (Fand (Fimplies (Fand (Fterm e) inv) result)
      (Fimplies (Fand (Fnot (Fterm e)) inv) q)))) -> (valid_triple (Fand inv
      result1) i q)
MARCHE Claude's avatar
MARCHE Claude committed
434 435 436 437 438
  end.

Qed.