mlw_wp.ml 21.9 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2010-2012                                               *)
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
(*    Guillaume Melquiond                                                 *)
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Ident
open Ty
open Term
25
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27 28 29 30
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

31 32
let debug = Debug.register_flag "whyml_wp"

33
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
34 35 36 37

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

38 39
let fresh_mark () = create_vsymbol (id_fresh "mark") ty_mark

Andrei Paskevich's avatar
Andrei Paskevich committed
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

let th_mark =
  let uc = create_theory (id_fresh "WP builtins") in
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
  let uc = add_param_decl uc fs_old in
  close_theory uc

let fs_setmark =
  create_lsymbol (id_fresh "set_mark") [] (Some ty_mark)

let e_setmark = e_lapp fs_setmark [] (ity_pur ts_mark [])

let vs_old = create_vsymbol (id_fresh "'old") ty_mark
let vs_now = create_vsymbol (id_fresh "'now") ty_mark
62

63 64
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
65

66
let mk_t_if f = t_if f t_bool_true t_bool_false
67
let to_term t = if t.t_ty = None then mk_t_if t else t
68 69 70 71 72 73 74

(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
let erase_mark lab t = t_subst_single lab (t_var vs_now) t

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
(* replace [at(t,now)] with [t] modulo variable renaming *)
let rec drop_at now m t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs m) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old ->
      assert false
  | Tapp (ls, [e;{t_node = Tvar lab}]) when ls_equal ls fs_at ->
      if vs_equal lab vs_old then assert false else
      if vs_equal lab vs_now then drop_at true m e else
      (* no longer assume that unmarked variables are at mark 'now *)
      t_map (drop_at false m) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let m = Mvs.set_inter m t.t_vars in
      if Mvs.is_empty m then t else
      t_map (drop_at now m) t
  | _ ->
      t_map (drop_at now m) t

94 95 96
(** Specifications *)

let psymbol_spec_t : type_v Wps.t = Wps.create 17
97
let e_apply_spec_t : type_c Wexpr.t = Wexpr.create 17
98

99 100 101
let add_pv_varm pv m = Mid.add pv.pv_vs.vs_name pv.pv_vtv.vtv_vars m
let add_pv_vars pv s = vars_union pv.pv_vtv.vtv_vars s

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
let rec check_spec vty tyv = match vty, tyv with
  | VTvalue _, SpecV _ -> ()
  | VTarrow vta, SpecA (_::(_::_ as pvl), tyc) ->
      assert (eff_is_empty vta.vta_effect);
      check_spec vta.vta_result (SpecA (pvl, tyc))
  | VTarrow vta, SpecA ([_], tyc) ->
      let eff1 = vta.vta_effect in
      let eff2 = tyc.c_effect in
      assert (Sreg.equal eff1.eff_reads  eff2.eff_reads);
      assert (Sreg.equal eff1.eff_writes eff2.eff_writes);
      assert (Sexn.equal eff1.eff_raises eff2.eff_raises);
      assert (Sreg.equal eff1.eff_ghostr eff2.eff_ghostr);
      assert (Sreg.equal eff1.eff_ghostw eff2.eff_ghostw);
      assert (Sexn.equal eff1.eff_ghostx eff2.eff_ghostx);
      check_spec vta.vta_result tyc.c_result
  | _ -> assert false
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

let rec filter_v ~strict varm vars = function
  | SpecA (pvl, tyc) ->
      let varm = List.fold_right add_pv_varm pvl varm in
      let vars = List.fold_right add_pv_vars pvl vars in
      SpecA (pvl, filter_c ~strict varm vars tyc)
  | tyv -> tyv

and filter_c ~strict varm vars tyc =
  let result = filter_v ~strict varm vars tyc.c_result in
  let effect = eff_filter vars tyc.c_effect in
  if strict then begin
    let add _ f s = Mvs.set_union f.t_vars s in
    let vss = add () tyc.c_pre tyc.c_post.t_vars in
    let vss = Mexn.fold add tyc.c_xpost vss in
    let check { vs_name = id } _ = if not (Mid.mem id varm) then
      Loc.errorm "Local variable %s escapes from its scope" id.id_string in
    Mvs.iter check vss
  end;
  { tyc with c_effect = effect; c_result = result }

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
let add_psymbol_spec ~strict varm ps tyv =
  let vars = Mid.fold (fun _ -> vars_union) varm vars_empty in
  let tyv = filter_v ~strict varm vars tyv in
  check_spec (VTarrow ps.ps_vta) tyv; (* TODO: prove and remove *)
  Wps.set psymbol_spec_t ps tyv

(* TODO? move spec_inst and subst to Mlw_expr? *)
let vtv_full_inst sbs vtv =
  vty_value ~ghost:vtv.vtv_ghost (ity_full_inst sbs vtv.vtv_ity)

let pv_full_inst sbs pv =
  create_pvsymbol (id_clone pv.pv_vs.vs_name) (vtv_full_inst sbs pv.pv_vtv)

let rec spec_inst_v sbs tvm vsm = function
  | SpecV vtv ->
      SpecV (vtv_full_inst sbs vtv)
  | SpecA (pvl,tyc) ->
      let add m pv =
        let nv = pv_full_inst sbs pv in
        Mvs.add pv.pv_vs (t_var nv.pv_vs) m, nv in
      let vsm, pvl = Util.map_fold_left add vsm pvl in
      SpecA (pvl, spec_inst_c sbs tvm vsm tyc)

and spec_inst_c sbs tvm vsm tyc =
  let subst = t_ty_subst tvm vsm in {
    c_pre    = subst tyc.c_pre;
    c_effect = eff_full_inst sbs tyc.c_effect;
    c_result = spec_inst_v sbs tvm vsm tyc.c_result;
    c_post   = subst tyc.c_post;
    c_xpost  = Mexn.map subst tyc.c_xpost; }

let rec subst_v pv t = function
  | SpecA (pvl,tyc) when not (List.exists (pv_equal pv) pvl) ->
      SpecA (pvl, subst_c pv t tyc)
  | tyv -> tyv

and subst_c pv t tyc =
  let subst = t_subst (Mvs.singleton pv.pv_vs t) in {
    c_pre    = subst tyc.c_pre;
    c_effect = tyc.c_effect;
    c_result = subst_v pv t tyc.c_result;
    c_post   = subst tyc.c_post;
    c_xpost  = Mexn.map subst tyc.c_xpost; }

183 184 185 186 187 188 189 190 191
let spec_lambda l tyv =
  let tyc = {
    c_pre    = l.l_pre;
    c_effect = l.l_expr.e_effect;
    c_result = tyv;
    c_post   = l.l_post;
    c_xpost  = l.l_xpost } in
  SpecA (l.l_args, tyc)

192 193 194 195 196 197 198 199 200
let spec_val vd = match vd.val_name with
  | LetA ps -> add_psymbol_spec ~strict:true vd.val_vars ps vd.val_spec
  | LetV _  -> ()

let rec spec_let ~strict pvm { let_var = lv; let_expr = e } = match lv with
  | LetA ps -> add_psymbol_spec ~strict e.e_vars ps (spec_expr pvm e)
  | LetV _  -> ignore (spec_expr pvm e)

and spec_rec pvm rdl =
201 202 203 204 205
  let add_vars m rd = Mid.set_union m rd.rec_vars in
  let vars = List.fold_left add_vars Mid.empty rdl in
  let add_early_spec rd = match rd.rec_lambda.l_expr.e_vty with
    | VTvalue vtv ->
        let tyv = spec_lambda rd.rec_lambda (SpecV vtv) in
206
        add_psymbol_spec ~strict:true rd.rec_vars rd.rec_ps tyv
207 208 209 210 211 212
    | VTarrow _ when Mid.mem rd.rec_ps.ps_name vars ->
        Loc.errorm ?loc:rd.rec_lambda.l_expr.e_loc
          "The body of a recursive function must be a first-order value"
    | VTarrow _ -> () in
  List.iter add_early_spec rdl;
  let add_late_spec rd =
213
    let tyv = spec_expr pvm rd.rec_lambda.l_expr in
214 215 216
    match rd.rec_lambda.l_expr.e_vty with
    | VTarrow _ ->
        let tyv = spec_lambda rd.rec_lambda tyv in
217
        add_psymbol_spec ~strict:true rd.rec_vars rd.rec_ps tyv
218 219 220
    | VTvalue _ -> () in
  List.iter add_late_spec rdl

221
and spec_expr pvm e = match e.e_node with
222 223 224 225
  | Elogic _
  | Eassert _
  | Eabsurd -> SpecV (vtv_of_expr e)
  | Evalue pv -> SpecV pv.pv_vtv
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  | Earrow ps ->
    (* TODO: a ps may not be in the table, if it comes from a module
       for which we never computed WPs. Pass the known_map to spec_expr
       and compute it now. *)
      let rec vty_match sbs t1 t2 = match t1,t2 with
        | VTvalue v1, VTvalue v2 ->
            ity_match sbs v1.vtv_ity v2.vtv_ity
        | VTarrow a1, VTarrow a2 ->
            let sbs = ity_match sbs a1.vta_arg.vtv_ity a2.vta_arg.vtv_ity in
            vty_match sbs a1.vta_result a2.vta_result
        | _ -> assert false
      in
      let sbs = vty_match ps.ps_subst (VTarrow ps.ps_vta) e.e_vty in
      let tvm = Mtv.map ty_of_ity sbs.ity_subst_tv in
      let tyv = Wps.find psymbol_spec_t ps in
      spec_inst_v sbs tvm Mvs.empty tyv
  | Eapp (e1,pv) ->
      let tyv = spec_expr pvm e1 in
      let t = Mpv.find_def (t_var pv.pv_vs) pv pvm in
      begin match tyv with
        | SpecA ([pv],tyc) ->
            let tyc = subst_c pv t tyc in
            (* we will use this for WP *)
            Wexpr.set e_apply_spec_t e tyc;
            tyc.c_result
        | SpecA (pv::pvl,tyc) ->
            (* pv cannot occur in pvl *)
            SpecA (pvl, subst_c pv t tyc)
        | _ -> assert false
      end
  | Elet (ld,e1) ->
      spec_let ~strict:false pvm ld;
      let pvm = match ld.let_var, e1.e_node with
        | LetV pv, Elogic t ->
            Mpv.add pv (to_term t) pvm
        | LetV pv, Evalue v ->
            let t = Mpv.find_def (t_var v.pv_vs) v pvm in
            Mpv.add pv t pvm
        | _ -> pvm
      in
      spec_expr pvm e1
  | Erec (rdl,e1) ->
      spec_rec pvm rdl;
      spec_expr pvm e1
  | Eghost e1 -> spec_expr pvm e1
271 272 273 274 275 276
  | Eany tyc -> tyc.c_result
  | Eassign (e1,_,_)
  | Eloop (_,_,e1)
  | Efor (_,_,_,e1)
  | Eraise (_,e1)
  | Eabstr (e1,_,_) ->
277
      ignore (spec_expr pvm e1);
278 279
      SpecV (vtv_of_expr e)
  | Eif (e1,e2,e3) ->
280 281 282
      ignore (spec_expr pvm e1);
      ignore (spec_expr pvm e2);
      spec_expr pvm e3
283
  | Ecase (e1,bl) ->
284 285
      ignore (spec_expr pvm e1);
      List.iter (fun (_,e) -> ignore (spec_expr pvm e)) bl;
286 287
      SpecV (vtv_of_expr e)
  | Etry (e1,bl) ->
288 289
      ignore (spec_expr pvm e1);
      List.iter (fun (_,_,e) -> ignore (spec_expr pvm e)) bl;
290 291
      SpecV (vtv_of_expr e)

292
(** WP utilities *)
293 294 295 296 297 298 299 300 301 302 303

let ty_of_vty = function
  | VTvalue vtv -> ty_of_ity vtv.vtv_ity
  | VTarrow _   -> ty_unit

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
304
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
305

306 307 308 309 310 311 312 313 314 315
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

let wp_expl l f =
  let lab = Slab.add Split_goal.stop_split f.t_label in
  let lab = Slab.add (Ident.create_label ("expl:" ^ l)) lab in
  t_label ?loc:f.t_loc lab f

316
let wp_and ~sym f1 f2 =
317 318
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

319
let wp_ands ~sym fl =
320 321
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

322
let wp_implies f1 f2 = t_implies_simp f1 f2
323

324 325 326 327 328 329
let wp_forall vl f = t_forall_close_simp vl [] f

let wp_let v t f = t_let_close_simp v t f

(*
match f.t_node with
330 331 332 333 334 335 336 337 338 339 340
  | Tbinop (Timplies, {t_node = Tapp (s,[{t_node = Tvar u};r])},h)
    when ls_equal s ps_equ && vs_equal u v && not (Mvs.mem v r.t_vars) ->
      t_let_close_simp v r h
  | Tbinop (Timplies, {t_node = Tbinop (Tand, g,
                      {t_node = Tapp (s,[{t_node = Tvar u};r])})},h)
    when ls_equal s ps_equ && vs_equal u v && not (Mvs.mem v r.t_vars) ->
      t_let_close_simp v r (t_implies_simp g h)
  | _ when Mvs.mem v f.t_vars ->
      t_forall_close_simp [v] [] f
  | _ ->
      f
341
*)
342

343 344 345 346 347 348 349
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
}
350

351 352
(** Reconstruct pure values after writes *)

353
let find_constructors env sts ity = match ity.ity_node with
354 355 356
  | Itypur (ts,_) ->
      let base = ity_pur ts (List.map ity_var ts.ts_args) in
      let sbs = ity_match ity_subst_empty base ity in
357
      let csl = Decl.find_constructors env.pure_known ts in
358 359 360 361 362 363 364 365
      if csl = [] || Sts.mem ts sts then Loc.errorm
        "Cannot update values of type %a" Mlw_pretty.print_ity base;
      let subst ty = ity_full_inst sbs (ity_of_ty ty), None in
      let cnstr (cs,_) = cs, List.map subst cs.ls_args in
      Sts.add ts sts, List.map cnstr csl
  | Ityapp (its,_,_) ->
      let base = ity_app its (List.map ity_var its.its_args) its.its_regs in
      let sbs = ity_match ity_subst_empty base ity in
366
      let csl = Mlw_decl.find_constructors env.prog_known its in
367 368 369 370 371 372 373 374 375
      if csl = [] || Sts.mem its.its_pure sts then Loc.errorm
        "Cannot update values of type %a" Mlw_pretty.print_ity base;
      let subst vtv =
        ity_full_inst sbs vtv.vtv_ity,
        Util.option_map (reg_full_inst sbs) vtv.vtv_mut in
      let cnstr (cs,_) = cs.pl_ls, List.map subst cs.pl_args in
      Sts.add its.its_pure sts, List.map cnstr csl
  | Ityvar _ -> assert false

376
let update_var env mreg vs =
377 378 379 380 381 382 383 384 385
  let rec update sts vs ity mut =
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
    let vs = Util.option_apply vs get_vs mut in
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
    if ity_pure ity || not (Mreg.exists check_reg mreg) then
      t_var vs
    else
386
      let sts, csl = find_constructors env sts ity in
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
      let branch (cs,ityl) =
        let mk_var (ity,_) = create_vsymbol (id_fresh "y") (ty_of_ity ity) in
        let vars = List.map mk_var ityl in
        let pat = pat_app cs (List.map pat_var vars) vs.vs_ty in
        let mk_arg vs (ity, mut) = update sts vs ity mut in
        let t = fs_app cs (List.map2 mk_arg vars ityl) vs.vs_ty in
        t_close_branch pat t in
      t_case (t_var vs) (List.map branch csl)
  in
  let vtv = (restore_pv vs).pv_vtv in
  update Sts.empty vs vtv.vtv_ity vtv.vtv_mut

(* quantify over all references in eff
   eff : effect
   f   : formula

   let eff = { rho1, ..., rhon }
   we collect in vars all variables involving these regions
   let vars = { v1, ..., vm }

     forall r1:ty(rho1). ... forall rn:ty(rhon).
     let v'1 = update v1 r1...rn in
     ...
     let v'm = update vm r1...rn in
     f[vi <- v'i]
*)

let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

418 419
let quantify env regs f =
  (* mreg : updated region -> vs *)
420 421 422 423 424 425 426 427
  let get_var reg () =
    let test vs _ id = match (restore_pv vs).pv_vtv with
      | { vtv_ity = { ity_node = Ityapp (_,_,[r]) }}
      | { vtv_mut = Some r } when reg_equal r reg -> vs.vs_name
      | _ -> id in
    let id = Mvs.fold test f.t_vars reg.reg_name in
    mk_var id model1_lab (ty_of_ity reg.reg_ity)
  in
428
  let mreg = Mreg.mapi get_var regs in
429
  (* update all program variables involving these regions *)
430
  let update_var vs _ = match update_var env mreg vs with
431 432 433 434 435 436 437
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
  let vars = Mvs.mapi_filter update_var f.t_vars in
  (* vv' : old vs -> new vs *)
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
  (* quantify *)
438
  let update v t f = wp_let (Mvs.find v vv') t f in
439
  let f = Mvs.fold update vars (drop_at true vv' f) in
440
  wp_forall (Mreg.values mreg) f
441 442 443

(** Weakest preconditions *)

444 445 446
let regs_of_reads  eff = Sreg.union eff.eff_reads eff.eff_ghostr
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
let regs_of_effect eff = Sreg.union (regs_of_reads eff) (regs_of_writes eff)
447

448 449 450 451 452 453
let t_void = fs_app (fs_tuple 0) [] ty_unit

let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

454
let rec wp_expr env e q xq =
455 456 457
  let lab = fresh_mark () in
  let q = old_mark lab q in
  let xq = Mexn.map (old_mark lab) xq in
458
  let f = wp_desc env e q xq in
459 460
  let f = erase_mark lab f in
  if Debug.test_flag debug then begin
461
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
462 463 464
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
465
  f
466

467
and wp_desc env e q xq = match e.e_node with
468 469 470
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
471
      t_subst_single v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
472 473 474
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
475
      t_subst_single v t q
476 477 478
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
Andrei Paskevich's avatar
Andrei Paskevich committed
479
  | Erec (rdl, e) ->
480 481 482
      let fr = wp_rec_defn env rdl in
      let fe = wp_expr env e q xq in
      wp_and ~sym:true (wp_ands ~sym:true fr) fe
483 484 485 486 487 488 489 490 491 492 493
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
      let f = wp_expl "assertion" f in
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
      let f = wp_expl "check" f in
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
494
  | Eabsurd ->
495 496
      wp_label e t_absurd

497 498 499 500 501 502 503 504 505 506 507 508 509
  |Eabstr (_, _, _)-> assert false
  |Etry (_, _)-> assert false
  |Eraise (_, _)-> assert false
  |Efor (_, _, _, _)-> assert false
  |Eloop (_, _, _)-> assert false
  |Eany _-> assert false
  |Eghost _-> assert false
  |Eassign (_, _, _)-> assert false
  |Ecase (_, _)-> assert false
  |Eif (_, _, _)-> assert false
  |Elet (_, _)-> assert false
  |Eapp (_, _)-> assert false

510
and wp_lambda env l =
511 512
  let q = wp_expl "normal postcondition" l.l_post in
  let xq = Mexn.map (wp_expl "exceptional postcondition") l.l_xpost in
513
  let f = wp_expr env l.l_expr q xq in
514
  let f = wp_implies l.l_pre f in
515
  let f = quantify env (regs_of_effect l.l_expr.e_effect) f in
516
  wp_forall (List.map (fun pv -> pv.pv_vs) l.l_args) f
517

518 519
and wp_rec_defn env rdl =
  List.map (fun rd -> wp_lambda env rd.rec_lambda) rdl
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in
  let rec t_iff_bool f1 f2 = match f1.t_node, f2.t_node with
    | Tnot f1, _ -> t_not_simp (t_iff_bool f1 f2)
    | _, Tnot f2 -> t_not_simp (t_iff_bool f1 f2)
    | Tapp (ps1, [t1; { t_node = Tapp (ls1, []) }]),
      Tapp (ps2, [t2; { t_node = Tapp (ls2, []) }])
      when ls_equal ps1 ps_equ && ls_equal ps2 ps_equ &&
           is_bool ls1 && is_bool ls2 ->
        if ls_equal ls1 ls2 then t_equ t1 t2 else t_neq t1 t2
    | _ ->
        t_iff_simp f1 f2
  in
  let rec t_btop t = t_label ?loc:t.t_loc t.t_label (* t_label_copy? *)
    (match t.t_node with
    | Tif (f,t1,t2) ->
        t_if_simp (f_btop f) (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_andb ->
        t_and_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_orb ->
        t_or_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1]) when ls_equal ls ls_notb ->
        t_not_simp (t_btop t1)
    | Tapp (ls, []) when ls_equal ls ls_True ->
        t_true
    | Tapp (ls, []) when ls_equal ls ls_False ->
        t_false
    | _ ->
        t_equ_simp (f_btop t) t_True)
  and f_btop f = match f.t_node with
    | Tapp (ls, [{t_ty = Some {ty_node = Tyapp (ts, [])}} as l; r])
      when ls_equal ls ps_equ && ts_equal ts ts_bool ->
        t_label ?loc:f.t_loc f.t_label (t_iff_bool (t_btop l) (t_btop r))
    | _ ->
        t_map_simp f_btop f
  in
  f_btop f
***)
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t;{t_node = Tvar lab}])
    when ls_equal ls fs_at && vs_equal lab vs_now ->
      remove_at t
  | _ ->
      t_map remove_at f

(* replace t_absurd with t_false *)
let rec unabsurd f = match f.t_node with
  | Tapp (ls, []) when ls_equal ls ls_absurd ->
      t_label_copy f t_false
  | _ ->
      t_map unabsurd f

let add_wp_decl name f uc =
  (* prepare a proposition symbol *)
  let s = "WP_" ^ name.id_string in
  let lab = Ident.create_label ("expl:" ^ name.id_string) in
  let label = Slab.add lab name.id_label in
  let id = id_fresh ~label ?loc:name.id_loc s in
  let pr = create_prsymbol id in
  (* prepare the VC formula *)
  let f = remove_at f in
  (* let f = bool_to_prop uc f in *)
  let f = unabsurd f in
  (* get a known map with tuples added *)
  let km = Theory.get_known uc in
  (* simplify f *)
  let f = Eval_match.eval_match ~inline:Eval_match.inline_nonrec_linear km f in
  (* printf "wp: f=%a@." print_term f; *)
  let d = create_prop_decl Pgoal pr f in
  Theory.add_decl uc d

602 603 604 605 606 607
let mk_env env km th = {
  prog_known = km;
  pure_known = Theory.get_known th;
  global_env = env;
}

608
let wp_let env km th ({ let_var = lv; let_expr = e } as ld) =
609
  spec_let ~strict:true Mpv.empty ld;
610 611
  let env = mk_env env km th in
  let q, xq = default_post e.e_vty e.e_effect in
612
  let f = wp_expr env e q xq in
613 614 615 616
  let f = wp_forall (Mvs.keys f.t_vars) f in
  let id = match lv with
    | LetV pv -> pv.pv_vs.vs_name
    | LetA ps -> ps.ps_name in
617 618
  add_wp_decl id f th

619
let wp_rec env km th rdl =
620
  spec_rec Mpv.empty rdl;
621
  let env = mk_env env km th in
622 623
  let fl = wp_rec_defn env rdl in
  let add_one th d f =
624
    Debug.dprintf debug "wp %s = %a@\n----------------@."
625 626
      d.rec_ps.ps_name.id_string Pretty.print_term f;
    add_wp_decl d.rec_ps.ps_name f th
627 628
  in
  List.fold_left2 add_one th rdl fl
629

630
let wp_val _env _km th vd = spec_val vd; th