cprinter.ml 46.2 KB
Newer Older
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
1
open Ident
2

3 4
exception Unsupported of string

Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
5
module C = struct
6

Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
7 8
  type ty =
    | Tvoid
9
    | Tsyntax of string * ty list
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
10 11 12 13 14
    | Tptr of ty
    | Tarray of ty * expr
    | Tstruct of ident * (ident * ty) list
    | Tunion of ident * (ident * ty) list
    | Tnamed of ident (* alias from typedef *)
15
    | Tnosyntax (* types that do not have a syntax, can't be printed *)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    (* enum, const could be added *)

  (* int x=2, *y ... *)
  and names = ty * (ident * expr) list

  (* names with a single declaration *)
  and name = ty * ident * expr

  (* return type, parameter list. Variadic functions not handled. *)
  and proto = ty * (ty * ident) list

  and binop = Band | Bor | Beq | Bne | Bassign (* += and co. maybe to add *)

  and unop = Unot | Ustar | Uaddr (* (pre|post)(incr|decr) maybe to add *)

  and expr =
    | Enothing
    | Eunop of unop * expr
    | Ebinop of binop * expr * expr
35
    | Equestion of expr * expr * expr (* c ? t : e *)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
36 37 38
    | Ecast of ty * expr
    | Ecall of expr * expr list
    | Econst of constant
39
    | Evar of ident
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
40 41 42
    | Esize_expr of expr
    | Esize_type of ty
    | Eindex of expr * expr (* Array access *)
43 44
    | Edot of expr * ident (* Field access with dot *)
    | Earrow of expr * ident (* Pointer access with arrow *)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
45 46 47
    | Esyntax of string * ty * (ty array) * (expr*ty) list * bool
  (* template, type and type arguments of result, typed arguments,
     is/is not converter*)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  and constant =
    | Cint of string
    | Cfloat of string
    | Cchar of string
    | Cstring of string

  type stmt =
    | Snop
    | Sexpr of expr
    | Sblock of body
    | Sseq of stmt * stmt
    | Sif of expr * stmt * stmt
    | Swhile of expr * stmt
    | Sfor of expr * expr * expr * stmt
    | Sbreak
    | Sreturn of expr

  and definition =
67
    | Dfun of ident * proto * body
68
    | Dinclude of ident
69
    | Dproto of ident * proto
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
70 71 72 73 74 75 76
    | Ddecl of names
    | Dtypedef of ty * ident

  and body = definition list * stmt

  type file = definition list

77 78
  exception NotAValue

79 80 81 82 83 84 85 86 87 88 89 90
  let rec is_nop = function
    | Snop -> true
    | Sblock ([], s) -> is_nop s
    | Sseq (s1,s2) -> is_nop s1 && is_nop s2
    | _ -> false

  let rec one_stmt = function
    | Snop -> true
    | Sexpr _ -> true
    | Sblock (d,s) -> d = [] && one_stmt s
    | _ -> false

Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
91 92 93
  (** [assignify v] transforms a statement that computes a value into
     a statement that assigns that value to v *)
  let rec assignify v = function
94
    | Snop -> raise NotAValue
Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
95 96 97 98 99 100 101
    | Sexpr e -> Sexpr (Ebinop (Bassign, v, e))
    | Sblock (ds, s) -> Sblock (ds, assignify v s)
    | Sseq (s1, s2) when not (is_nop s2) -> Sseq (s1, assignify v s2)
    | Sseq (s1,_) -> assignify v s1
    | Sif (c,t,e) -> Sif (c, assignify v t, assignify v e)
    | Swhile (c,s) -> Swhile (c, assignify v s) (* can this be a value ?*)
    | Sfor (e0,e1,e2,s) -> Sfor (e0,e1,e2, assignify v s)
102 103 104
    | Sbreak -> raise NotAValue
    | Sreturn _ -> raise NotAValue

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

  (** [get_last_expr] extracts the expression computed by the given statement.
     This is needed when loop conditions are more complex than a simple expression. *)
  let rec get_last_expr = function
    | Snop -> raise NotAValue
    | Sexpr e -> Snop, e
    | Sblock (ds,s) ->
      let s',e = get_last_expr s in
      Sblock(ds,s'), e
    | Sseq (s1,s2) when not (is_nop s2) ->
      let s', e = get_last_expr s2 in
      Sseq(s1,s'), e
    | Sseq (s1,_) -> get_last_expr s1
    | Sif (c,Sexpr t,Sexpr e) -> Snop, Equestion(c,t,e)
    | Sif _ -> raise (Unsupported "while (complex if)")
    | Swhile (_c,_s) -> raise (Unsupported "while (while) {}")
    | Sfor _ -> raise (Unsupported "while (for)")
    | Sbreak -> raise NotAValue
    | Sreturn _ -> raise NotAValue

  (** [propagate_in_expr id v] and the associated functions replace
      all instances of [id] by [v] in an
      expression/statement/definition/block. It is used for constant
      propagation to reduce the number of variables. *)
129 130 131 132 133 134 135
  let rec propagate_in_expr id (v:expr) = function
    | Evar i when Ident.id_equal i id -> v
    | Evar i -> Evar i
    | Eunop (u,e) -> Eunop (u, propagate_in_expr id v e)
    | Ebinop (b,e1,e2) -> Ebinop (b,
                                  propagate_in_expr id v e1,
                                  propagate_in_expr id v e2)
136 137 138
    | Equestion (c,t,e) -> Equestion(propagate_in_expr id v c,
                                     propagate_in_expr id v t,
                                     propagate_in_expr id v e)
139 140 141 142 143 144 145 146
    | Ecast (ty,e) -> Ecast (ty, propagate_in_expr id v e)
    | Ecall (e, l) -> Ecall (propagate_in_expr id v e,
                             List.map (propagate_in_expr id v) l)
    | Esize_expr e -> Esize_expr (propagate_in_expr id v e)
    | Eindex (e1,e2) -> Eindex (propagate_in_expr id v e1,
                                propagate_in_expr id v e2)
    | Edot (e,i) -> Edot (propagate_in_expr id v e, i)
    | Earrow (e,i) -> Earrow (propagate_in_expr id v e, i)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
147 148
    | Esyntax (s,t,ta,l,b) ->
      Esyntax (s,t,ta,List.map (fun (e,t) -> (propagate_in_expr id v e),t) l,b)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    | Enothing -> Enothing
    | Econst c -> Econst c
    | Esize_type ty -> Esize_type ty

  let rec propagate_in_stmt id v = function
    | Sexpr e -> Sexpr (propagate_in_expr id v e)
    | Sblock b -> Sblock(propagate_in_block id v b)
    | Sseq (s1,s2) -> Sseq (propagate_in_stmt id v s1,
                            propagate_in_stmt id v s2)
    | Sif (e,s1,s2) -> Sif (propagate_in_expr id v e,
                            propagate_in_stmt id v s1,
                            propagate_in_stmt id v s2)
    | Swhile (e, s) -> Swhile (propagate_in_expr id v e,
                               propagate_in_stmt id v s)
    | Sfor (e1,e2,e3,s) -> Sfor (propagate_in_expr id v e1,
                                 propagate_in_expr id v e2,
                                 propagate_in_expr id v e3,
                                 propagate_in_stmt id v s)
    | Sreturn e -> Sreturn (propagate_in_expr id v e)
    | Snop -> Snop
    | Sbreak -> Sbreak

  and propagate_in_def id v d =
    let rec aux = function
      | [] -> [], true
      | (i,e)::t ->
        if Ident.id_equal i id then (i,e)::t, false
        else let t,b = aux t in ((i,propagate_in_expr id v e)::t), b
    in
    match d with
    | Ddecl (ty,l) ->
      let l,b = aux l in
      Ddecl (ty, l), b
    | Dinclude i -> Dinclude i, true
    | Dfun _ -> raise (Unsupported "nested function")
184 185
    | Dtypedef _ -> raise (Unsupported "typedef inside function")
    | Dproto _ -> raise (Unsupported "prototype inside function")
186 187 188 189 190 191 192 193 194 195 196 197

  and propagate_in_block id v (dl, s) =
    let dl, b = List.fold_left
      (fun (dl, acc) d ->
        if acc
        then
          let d, b = propagate_in_def id v d in
          (d::dl, b)
        else (d::dl, false))
      ([],true) dl in
    (List.rev dl, if b then propagate_in_stmt id v s else s)

198 199
  let is_empty_block s = s = Sblock([], Snop)
  let block_of_expr e = [], Sexpr e
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
(** [flatten_defs d s] appends all definitions in the statement [s] to d. *)
  (* TODO check ident unicity ? *)
  let rec flatten_defs d = function
    | Sseq (s1,s2) ->
      let d, s1' = flatten_defs d s1 in
      let d, s2' = flatten_defs d s2 in
      d, Sseq(s1',s2')
    | Sblock (d',s) ->
      let d',s' = flatten_defs d' s in
      d@d', s'
    | Sif (c,t,e) ->
      let d, t' = flatten_defs d t in
      let d, e' = flatten_defs d e in
      d,Sif(c,t',e')
    | Swhile (c,s) ->
      let d, s' = flatten_defs d s in
      d, Swhile (c, s')
    | Sfor (e1,e2,e3,s) ->
      let d, s' = flatten_defs d s in
      d, Sfor(e1,e2,e3,s')
    | s -> d,s

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

  let rec group_defs_by_type l =
    (* heuristic to reduce the number of lines of defs*)
    let rec group_types t1 t2 =
      match t1, t2 with
      | Tsyntax (s1, l1), Tsyntax (s2, l2) ->
        List.length l1 = List.length l2
        && List.for_all2 group_types l1 l2
        && (s1 = s2)
        && (not (String.contains s1 '*'))
      | Tsyntax _, _ | _, Tsyntax _ -> false
      | t1, t2 -> t1 = t2
    in
    match l with
    | [] | [_] -> l
    | Ddecl (ty1, el1) :: Ddecl (ty2, el2) :: l'
        when group_types ty1 ty2
          -> group_defs_by_type (Ddecl(ty1, el1@el2)::l')
    | Ddecl (ty1, el1) :: Ddecl (ty2, el2) :: Ddecl (ty3, el3) :: l'
        when group_types ty1 ty3
          -> group_defs_by_type (Ddecl (ty1, el1@el3) :: Ddecl (ty2, el2) :: l')
    | Ddecl (ty1, el1) :: Ddecl (ty2, el2) :: Ddecl (ty3, el3) :: l'
        when group_types ty2 ty3
          -> group_defs_by_type (Ddecl (ty1, el1) :: Ddecl (ty2, el2@el3) :: l')
    | Ddecl (ty1, el1) :: l' ->
      Ddecl (ty1, el1) :: group_defs_by_type l'
    | _ -> l

251 252 253 254 255 256 257 258 259
  let rec elim_empty_blocks = function
    | Sblock ([], s) -> elim_empty_blocks s
    | Sblock (d,s) -> Sblock (d, elim_empty_blocks s)
    | Sseq (s1,s2) -> Sseq (elim_empty_blocks s1, elim_empty_blocks s2)
    | Sif (c,t,e) -> Sif(c, elim_empty_blocks t, elim_empty_blocks e)
    | Swhile (c,s) -> Swhile(c, elim_empty_blocks s)
    | Sfor(e1,e2,e3,s) -> Sfor(e1,e2,e3,elim_empty_blocks s)
    | s -> s

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  let rec elim_nop = function
    | Sseq (s1,s2) ->
      let s1 = elim_nop s1 in
      let s2 = elim_nop s2 in
      begin match s1,s2 with
      | Snop, Snop -> Snop
      | Snop, s | s, Snop -> s
      | _ -> Sseq(s1,s2)
      end
    | Sblock (d,s) ->
      let s = elim_nop s in
      begin match d, s with
      | [], Snop -> Snop
      | _ -> Sblock(d,s)
      end
    | Sif (c,t,e) -> Sif(c, elim_nop t, elim_nop e)
    | Swhile (c,s) -> Swhile (c, elim_nop s)
    | Sfor(e1,e2,e3,s) -> Sfor(e1,e2,e3,elim_nop s)
    | s -> s

  let rec add_to_last_call params = function
    | Sblock (d,s) -> Sblock (d, add_to_last_call params s)
    | Sseq (s1,s2) when not (is_nop s2) ->
      Sseq (s1, add_to_last_call params s2)
    | Sseq (s1,_) -> add_to_last_call params s1
    | Sexpr (Ecall(fname, args)) ->
      Sexpr (Ecall(fname, params@args)) (*change name to ensure no renaming ?*)
    | Sreturn (Ecall (fname, args)) ->
      Sreturn (Ecall(fname, params@args))
    | _ -> raise (Unsupported "tuple pattern matching with too complex def")
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
290

Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
291 292 293 294 295 296 297 298 299 300 301 302 303
  let rec stmt_of_list (l: stmt list) : stmt =
    match l with
    | [] -> Snop
    | [s] -> s
    | h::t -> Sseq (h, stmt_of_list t)

  let simplify_expr (d,s) : expr =
    match (d,s) with
    | [], Sexpr e -> e
 (*   | [], Sreturn e -> assert false
    | [], Snop -> assert false
    | [], Sblock _ -> assert false *)
    | _ -> assert false
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
304
end
305

306 307 308 309 310 311 312 313 314
type info = Pdriver.printer_args = private {
  env         : Env.env;
  prelude     : Printer.prelude;
  thprelude   : Printer.prelude_map;
  blacklist   : Printer.blacklist;
  syntax      : Printer.syntax_map;
  converter   : Printer.syntax_map;
}

Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
module Print = struct

  open C
  open Format
  open Printer
  open Pp

  exception Unprinted of string

  let c_keywords = ["auto"; "break"; "case"; "char"; "const"; "continue"; "default"; "do"; "double"; "else"; "enum"; "extern"; "float"; "for"; "goto"; "if"; "int"; "long"; "register"; "return"; "short"; "signed"; "sizeof"; "static"; "struct"; "switch"; "typedef"; "union"; "unsigned"; "void"; "volatile"; "while" ]

  let () = assert (List.length c_keywords = 32)

  let sanitizer = sanitizer char_to_lalpha char_to_alnumus
  let printer = create_ident_printer c_keywords ~sanitizer

  let print_ident fmt id = fprintf fmt "%s" (id_unique printer id)

  let protect_on x s = if x then "(" ^^ s ^^ ")" else s

335 336 337 338 339 340 341
  let extract_stars ty =
    let rec aux acc = function
      | Tptr t -> aux (acc+1) t
      | t -> (acc, t)
    in
  aux 0 ty

Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
342 343 344 345
  let rec print_ty ?(paren=false) fmt = function
    | Tvoid -> fprintf fmt "void"
    | Tsyntax (s, tl) ->
      syntax_arguments
346
	s
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
347
        (print_ty ~paren:false) fmt tl
348
    | Tptr ty -> fprintf fmt "%a *" (print_ty ~paren:true) ty
349
    (* should be handled in extract_stars *)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    | Tarray (ty, expr) ->
      fprintf fmt (protect_on paren "%a[%a]")
        (print_ty ~paren:true) ty (print_expr ~paren:false) expr
    | Tstruct _ -> raise (Unprinted "structs")
    | Tunion _ -> raise (Unprinted "unions")
    | Tnamed id -> print_ident fmt id
    | Tnosyntax -> raise (Unprinted "type without syntax")

  and print_unop fmt = function
    | Unot -> fprintf fmt "!"
    | Ustar -> fprintf fmt "*"
    | Uaddr -> fprintf fmt "&"

  and print_binop fmt = function
    | Band -> fprintf fmt "&&"
    | Bor -> fprintf fmt "||"
    | Beq -> fprintf fmt "=="
    | Bne -> fprintf fmt "!="
    | Bassign -> fprintf fmt "="

  and print_expr ~paren fmt = function
    | Enothing -> Format.printf "enothing"; ()
    | Eunop(u,e) -> fprintf fmt (protect_on paren "%a %a")
      print_unop u (print_expr ~paren:true) e
    | Ebinop(b,e1,e2) ->
      fprintf fmt (protect_on paren "%a %a %a")
        (print_expr ~paren:true) e1 print_binop b (print_expr ~paren:true) e2
377 378 379 380 381
    | Equestion(c,t,e) ->
      fprintf fmt (protect_on paren "%a ? %a : %a")
        (print_expr ~paren:true) c
        (print_expr ~paren:true) t
        (print_expr ~paren:true) e
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    | Ecast(ty, e) ->
      fprintf fmt (protect_on paren "(%a)%a")
        (print_ty ~paren:false) ty (print_expr ~paren:true) e
    | Ecall (e,l) -> fprintf fmt (protect_on paren "%a(%a)")
      (print_expr ~paren:true) e (print_list comma (print_expr ~paren:false)) l
    | Econst c -> print_const fmt c
    | Evar id -> print_ident fmt id
    | Esize_expr e ->
      fprintf fmt (protect_on paren "sizeof(%a)") (print_expr ~paren:false) e
    | Esize_type ty ->
      fprintf fmt (protect_on paren "sizeof(%a)") (print_ty ~paren:false) ty
    | Eindex _ | Edot _ | Earrow _ -> raise (Unprinted "struct/array access")
    | Esyntax (s, t, args, lte,_) ->
      gen_syntax_arguments_typed snd (fun _ -> args)
        (if paren then ("("^s^")") else s)
        (fun fmt (e,_t) -> print_expr ~paren:false fmt e)
        (print_ty ~paren:false) (C.Enothing,t) fmt lte

  and print_const  fmt = function
    | Cint s | Cfloat s | Cchar s | Cstring s -> fprintf fmt "%s" s

403 404 405 406 407
  let print_id_init ~stars fmt ie =
    (if stars > 0
    then fprintf fmt "%s " (String.make stars '*')
    else ());
    match ie with
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
408 409 410 411 412 413
    | id, Enothing -> print_ident fmt id
    | id,e -> fprintf fmt "%a = %a" print_ident id (print_expr ~paren:false) e

  let rec print_stmt ~braces fmt = function
    | Snop -> Format.printf "snop"; ()
    | Sexpr e -> fprintf fmt "%a;" (print_expr ~paren:false) e;
414
    | Sblock ([] ,s) when (not braces || (one_stmt s && not (is_nop s))) ->
415
      (print_stmt ~braces:false) fmt s
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
416 417 418 419
    | Sblock b -> fprintf fmt "@[<hov>{@\n  @[<hov>%a@]@\n}@]" print_body b
    | Sseq (s1,s2) -> fprintf fmt "%a@\n%a"
      (print_stmt ~braces:false) s1
      (print_stmt ~braces:false) s2
420
    | Sif(c,t,e) when is_nop e ->
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
421
       fprintf fmt "if(%a)@\n%a" (print_expr ~paren:false) c
422
         (print_stmt ~braces:true) (Sblock([],t))
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
423 424
    | Sif (c,t,e) -> fprintf fmt "if(%a)@\n%a@\nelse@\n%a"
      (print_expr ~paren:false) c
425 426 427 428
      (print_stmt ~braces:true) (Sblock([],t))
      (print_stmt ~braces:true) (Sblock([],e))
    | Swhile (e,b) -> fprintf fmt "while (%a)@;<1 2>%a"
      (print_expr ~paren:false) e (print_stmt ~braces:true) (Sblock([],b))
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
429 430
    | Sfor _ -> raise (Unprinted "for loops")
    | Sbreak -> fprintf fmt "break;"
431
    | Sreturn Enothing -> fprintf fmt "return;"
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
432 433
    | Sreturn e -> fprintf fmt "return %a;" (print_expr ~paren:true) e

434 435
  and print_def fmt def =
    try match def with
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    | Dfun (id,(rt,args),body) ->
       fprintf fmt "%a %a(@[%a@])@ @[<hov>{@;<1 2>@[<hov>%a@]@\n}@\n@]"
               (print_ty ~paren:false) rt
               print_ident id
               (print_list comma
			   (print_pair_delim nothing space nothing
					     (print_ty ~paren:false) print_ident))
	       args
               print_body body
    | Dproto (id, (rt, args)) ->
      fprintf fmt "%a %a(@[%a@]);@;"
        (print_ty ~paren:false) rt
        print_ident id
        (print_list comma
           (print_pair_delim nothing space nothing
			     (print_ty ~paren:false) print_ident))
	args
    | Ddecl (ty, lie) ->
454 455 456 457 458
      let nb, ty = extract_stars ty in
      assert (nb=0);
      fprintf fmt "%a @[<hov>%a@];"
	(print_ty ~paren:false) ty
	(print_list comma (print_id_init ~stars:nb)) lie
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
459 460 461
    | Dinclude id ->
       fprintf fmt "#include<%a.h>@;" print_ident id
    | Dtypedef (ty,id) ->
462
       fprintf fmt "@[<hov>typedef@ %a@;%a;@]"
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
463
	       (print_ty ~paren:false) ty print_ident id
464
    with Unprinted s -> Format.printf "Missed a def because : %s@." s
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
465

466 467 468
  and print_body fmt (def, s) =
    if def = []
    then print_stmt ~braces:true fmt s
469 470 471 472
    else
      print_pair_delim nothing newline nothing
        (print_list newline print_def)
        (print_stmt ~braces:true)
473
        fmt (def,s)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
474 475 476 477 478 479 480 481

  let print_file fmt info ast =
    Mid.iter (fun _ sl -> List.iter (fprintf fmt "%s\n") sl) info.thprelude;
    newline fmt ();
    fprintf fmt "@[<v>%a@]@." (print_list newline print_def) ast

end

482 483 484 485 486 487 488
module Translate = struct
  open Pdecl
  open Ity
  open Ty
  open Expr
  open Term
  open Printer
489
  open Pmodule
490

491
  let rec ty_of_ty info ty =
492 493 494 495
    match ty.ty_node with
    | Tyvar v ->
      begin match query_syntax info.syntax v.tv_name
        with
496
        | Some s -> C.Tsyntax (s, [])
497 498
        | None -> C.Tnamed (v.tv_name)
      end
499
    | Tyapp (ts, tl) ->
500 501
       begin match query_syntax info.syntax ts.ts_name
        with
502
        | Some s -> C.Tsyntax (s, List.map (ty_of_ty info) tl)
503
        | None -> C.Tnosyntax
504 505 506 507
       end

  let pv_name pv = pv.pv_vs.vs_name

508 509
  type syntax_env = { in_unguarded_loop : bool;
                      computes_return_value : bool;
510
		      returns_tuple: bool * ident list;
511 512 513 514
                      breaks : Sid.t;
                      returns : Sid.t; }

  let rec expr info env (e:expr) : C.body =
515
    if e_ghost e then (Format.printf "translating ghost expr@."; C.([], Snop))
516 517 518 519
    else if is_e_void e then
      if env.computes_return_value
      then C.([], Sreturn(Enothing))
      else C.([], Snop)
520 521
    else if is_e_true e then expr info env (e_nat_const 1)
    else if is_e_false e then expr info env (e_nat_const 0)
522 523 524
    else match e.e_node with
    | Evar pv ->
       let e = C.Evar(pv_name pv) in
525
       C.([], if env.computes_return_value then Sreturn e else Sexpr e)
526 527
    | Econst (Number.ConstInt ic) ->
      let n = Number.compute_int ic in
528
      let e = C.(Econst (Cint (BigInt.to_string n))) in
529
      C.([], if env.computes_return_value then Sreturn e else Sexpr e)
530
    | Econst _ -> raise (Unsupported "real constants")
531
    | Eexec (ce, _cty) ->
532
      begin match ce.c_node with
533
      | Cfun e -> expr info env e
534
      | Capp (rs, pvsl) ->
535 536 537 538
	 if is_rs_tuple rs && env.computes_return_value
	 then begin
	     match env.returns_tuple with
	     | true, rl ->
539 540 541 542 543 544
		let args =
                  List.filter
                    (fun pv -> not (pv.pv_ghost
				    || ity_equal pv.pv_ity ity_unit))
		    pvsl
                in
545 546
		assert (List.length rl = List.length args);
		C.([],
547
		   List.fold_right2 (fun res arg acc ->
548 549 550 551 552 553 554
				     Sseq(Sexpr(Ebinop(Bassign,
						       Eunop(Ustar,Evar(res)),
						       Evar(pv_name arg))),
					 acc))
				    rl args (Sreturn(Enothing)))
	     | _ -> assert false
	   end
555
	 else
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
556 557 558 559 560 561
	   let e =
             match
               (query_syntax info.syntax rs.rs_name,
                query_syntax info.converter rs.rs_name) with
               | _, Some s
               | Some s, _ ->
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                 begin
                   try
                     let _ = Str.search_forward
                       (Str.regexp "[%]\\([tv]?\\)[0-9]+") s 0 in
                     let params =
		       List.map (fun pv -> (C.Evar(pv_name pv),
                                            ty_of_ty info (ty_of_ity pv.pv_ity)))
		         pvsl in
		     let rty = ty_of_ity e.e_ity in
		     let rtyargs = match rty.ty_node with
		       | Tyvar _ -> [||]
		       | Tyapp (_,args) ->
                         Array.of_list (List.map (ty_of_ty info) args)
		     in
		     C.Esyntax(s,ty_of_ty info rty, rtyargs, params,
                               Mid.mem rs.rs_name info.converter)
                   with Not_found ->
		     let args = List.filter
		       (fun pv -> not (pv.pv_ghost
				       || ity_equal pv.pv_ity ity_unit))
		       pvsl in
                     if pvsl=[]
                     then C.(Esyntax(s, Tnosyntax, [||], [], true)) (*constant*)
                     else
                     (*function defined in the prelude *)
		     C.(Ecall(Esyntax(s, Tnosyntax, [||], [], true),
			      List.map (fun pv -> Evar(pv_name pv)) args))
                 end
               | _ ->
                 let args = List.filter
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
592 593 594 595 596
		   (fun pv -> not (pv.pv_ghost
				   || ity_equal pv.pv_ity ity_unit))
		   pvsl in
		 C.(Ecall(Evar(rs.rs_name),
			  List.map (fun pv -> Evar(pv_name pv)) args))
597
         in
598 599
	   C.([],
              if env.computes_return_value
600 601 602 603
	      then
                if (ity_equal rs.rs_cty.cty_result ity_unit)
                then Sseq(Sexpr e, Sreturn Enothing)
                else Sreturn e
604
              else Sexpr e)
605
      | _ -> raise (Unsupported "Cpur/Cany") (*TODO clarify*)
606
      end
607
    | Eassign _ -> raise (Unsupported "mutable field assign")
608 609 610
    | Elet (ld,e) ->
      begin match ld with
      | LDvar (pv,le) ->
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
611
        (*Format.printf "let %s@." pv.pv_vs.vs_name.id_string;*)
612 613 614
        if pv.pv_ghost
        (*TODO check it's actually unused *)
        then expr info env e
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
615
        else if ity_equal pv.pv_ity ity_unit
616
             || pv.pv_vs.vs_name.id_string = "_"
617 618 619
        then let env' = {env with computes_return_value = false} in
             ([], C.Sseq (C.Sblock(expr info env' le),
		          C.Sblock(expr info env e)))
620 621 622 623
        else begin
          match le.e_node with
          | Econst (Number.ConstInt ic) ->
            let n = Number.compute_int ic in
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
624
            let ce = C.(Econst (Cint (BigInt.to_string n))) in
625 626
	    Format.printf "propagate constant %s for var %s@."
			  (BigInt.to_string n) (pv_name pv).id_string;
627
            C.propagate_in_block (pv_name pv) ce (expr info env e)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
628 629
          | Eexec ({c_node = Capp(rs,_); _},_)
              when Mid.mem rs.rs_name info.converter ->
630 631
            begin match expr info {env with computes_return_value = false} le
              with
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
632
            | [], C.Sexpr(se) ->
633
              C.propagate_in_block (pv_name pv) se (expr info env e)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
634 635
            | _ -> assert false
            end
636
          | _->
637
            let t = ty_of_ty info (ty_of_ity pv.pv_ity) in
638
            match expr info {env with computes_return_value = false} le with
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
639 640 641 642
            | [], C.Sexpr((C.Esyntax(_,_,_,_,b) as se))
                when b (* converter *) ->
              Format.printf "propagate converter for var %s@."
                (pv_name pv).id_string;
643
              C.propagate_in_block (pv_name pv) se (expr info env e)
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
644
            | d,s ->
Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
645
              let initblock = d, C.assignify (C.Evar (pv_name pv)) s in
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
646
              [ C.Ddecl (t, [pv_name pv, C.Enothing]) ],
647
              C.Sseq (C.Sblock initblock, C.Sblock (expr info env e))
648
        end
649 650
      | LDsym _ -> raise (Unsupported "LDsym")
      | LDrec _ -> raise (Unsupported "LDrec") (* TODO for rec at least*)
651
      end
652
    | Eif (cond, th, el) ->
653 654 655
       let c = expr info {env with computes_return_value = false} cond in
       let t = expr info env th in
       let e = expr info env el in
656 657 658 659 660 661 662 663
       begin match c with
	     | [], C.Sexpr c ->
		if is_e_false th && is_e_true el
		then C.([], Sexpr(Eunop(Unot, c)))
		else [], C.Sif(c,C.Sblock t, C.Sblock e)
	     | cdef, cs ->
		let cid = id_register (id_fresh "cond") in (* ? *)
		C.Ddecl (C.Tsyntax ("int",[]), [cid, C.Enothing])::cdef,
Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
664
		C.Sseq (C.assignify (C.Evar cid) cs,
665
                        C.Sif (C.Evar cid, C.Sblock t, C.Sblock e))
666 667
       (* TODO detect empty branches and replace with Snop, detect and/or*)
       end
668 669 670
    | Ewhile (c,_,_,b) ->
      Format.printf "while@.";
      let cd, cs = expr info {env with computes_return_value = false} c in
671 672 673
      (* this is needed so that the extracted expression has all
         needed variables in its scope *)
      let cd, cs = C.flatten_defs cd cs in
674
      let cd = C.group_defs_by_type cd in
675 676
      let env' = { computes_return_value = false;
                   in_unguarded_loop = true;
677
		   returns_tuple = env.returns_tuple;
678 679 680 681 682
                   returns = env.returns;
                   breaks =
                     if env.in_unguarded_loop
                     then Sid.empty else env.breaks } in
      let b = expr info  env' b in
683 684 685
      begin match cs with
      | C.Sexpr ce -> cd, C.Swhile (ce, C.Sblock b)
      | _ ->
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
686 687 688
        begin match C.get_last_expr cs with
        | C.Snop, e -> cd, C.(Swhile(e, C.Sblock b))
        | s,e -> cd, C.(Swhile(Econst (Cint "1"),
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
689
                     Sseq(s,
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
690 691 692
                          Sseq(Sif(Eunop(Unot, e), Sbreak, Snop),
                               C.Sblock b))))
        end
693
      end
694 695 696
    | Etry (b, exm) ->
      Format.printf "TRY@.";
      let is_while = match b.e_node with Ewhile _ -> true | _-> false in
697
      let breaks,returns = Mxs.fold
698 699 700 701 702 703 704 705 706 707 708 709
        (fun xs (pvsl,r) (bs,rs) ->
          let id = xs.xs_name in
          match pvsl, r.e_node with
          | [pv], Evar pv' when pv_equal pv pv' && env.computes_return_value ->
            (bs, Sid.add id rs)
          | [], _ when is_e_void r && is_while ->
            (Sid.add id bs, rs)
          |_ -> raise (Unsupported "non break/return exception in try"))
        exm (Sid.empty, env.returns)
      in
      let env' = { computes_return_value = env.computes_return_value;
                   in_unguarded_loop = false;
710
		   returns_tuple = env.returns_tuple;
711 712 713 714 715 716 717 718 719 720 721
                   breaks = breaks;
                   returns = returns;
                 } in
      expr info env' b
    | Eraise (xs,_) when Sid.mem xs.xs_name env.breaks ->
      Format.printf "BREAK@.";
      ([], C.Sbreak)
    | Eraise (xs,r) when Sid.mem xs.xs_name env.returns ->
      Format.printf "RETURN@.";
      expr info {env with computes_return_value = true} r
    | Eraise _ -> raise (Unsupported "non break/return exception raised")
722
    | Efor _ -> raise (Unsupported "for loops")  (*TODO*)
723
    | Eassert _ -> [], C.Snop
724 725 726 727 728 729 730
      (* let (a,b) = f(...) in *)
    | Ecase (e1,[{pp_pat = {pat_node = Papp(ls,rets)}}, e2])
        when is_fs_tuple ls
          && List.for_all (fun p ->
            match p.pat_node with Pvar _ -> true |_-> false)
            rets
          ->
731 732 733 734
      let rets, defs = List.fold_right
        (fun p (r, d)-> match p.pat_node with
        | Pvar vs -> (C.(Eunop(Uaddr,Evar(vs.vs_name)))::r,
		     C.Ddecl(ty_of_ty info vs.vs_ty, [vs.vs_name, C.Enothing])::d)
735
        | _ -> assert false )
736
        rets ([], []) in
737
      let d,s = expr info {env with computes_return_value = false} e1 in
738
      let s' = C.add_to_last_call rets s in
739
      let b = expr info env e2 in
740
      d@defs, C.(Sseq(s', Sblock b))
741 742
    | Ecase _ -> raise (Unsupported "pattern matching")
    | Eghost _ | Epure _ | Eabsurd -> assert false
743 744 745 746

  let pdecl info (pd:Pdecl.pdecl) : C.definition list =
    match pd.pd_node with
    | PDlet (LDsym (rs, ce)) ->
747 748
      let fname = rs.rs_name in
      Format.printf "PDlet rsymbol %s@." fname.id_string;
749 750 751
      if rs_ghost rs
      then begin Format.printf "is ghost@."; [] end
      else
752 753 754 755 756 757 758 759 760 761 762
      begin try
              if Mid.mem fname info.syntax
              then (Format.printf "has syntax@."; [])
              else
                let params = List.map
		  (fun pv -> ty_of_ty info pv.pv_vs.vs_ty, pv_name pv)
		  (List.filter
		     (fun pv -> not pv.pv_ghost
                       && not (ity_equal pv.pv_ity ity_unit))
		     rs.rs_cty.cty_args) in
                begin match ce.c_node with
763 764 765 766 767 768 769
                      | Cfun e ->
			 let env = { computes_return_value = true;
				     in_unguarded_loop = false;
				     returns_tuple = false, [];
				     returns = Sid.empty;
				     breaks = Sid.empty; } in
			 let rity = rs.rs_cty.cty_result in
770
			 let is_simple_tuple ity =
771 772
			   let arity_zero = function
			     | Ityapp(_,a,r) -> a = [] && r = []
773 774
			     | Ityreg { reg_args = a; reg_regs = r } ->
                               a = [] && r = []
775 776 777
			     | Ityvar _ -> true
			   in
			   (match ity.ity_node with
778 779 780
			    | Ityapp ({its_ts = s},_,_)
                            | Ityreg { reg_its = {its_ts = s}; }
			      -> is_ts_tuple s
781
			    | _ -> false)
782 783 784
			   && (ity_fold
                                 (fun acc ity ->
                                   acc && arity_zero ity.ity_node) true ity)
785 786 787 788 789 790 791 792 793 794 795
			 in
			 (* FIXME is it necessary to have arity 0 in regions ?*)
			 let rtype =
			   if ity_equal rity ity_unit
			   then C.Tvoid
			   else ty_of_ty info (ty_of_ity rity) in
			 let env, rtype, params = match rtype with
			   | C.Tnosyntax when is_simple_tuple rity ->
			      (* instead of returning a tuple, return
			      void and assign the result to addresses
			      passed as parameters *)
796
			      let returns =
797
				let f ity b acc =
798
				  if b.its_visible
799
				  then (C.Tptr(ty_of_ty info (ty_of_ity ity)),
800 801 802 803
					id_register (id_fresh "result"))::acc
				  else acc
				in
				match rity.ity_node with
804
				| Ityapp(s, tl,_)
805
				| Ityreg { reg_its = s; reg_args = tl } ->
806
				   List.fold_right2 f tl s.its_arg_flg []
807 808 809 810 811
				| Ityvar _ -> assert false
			      in
			      {env with returns_tuple = true, List.map snd returns},
			      C.Tvoid,
			      returns@params
812
			   | _ -> env, rtype, params
813 814
			 in
			 let d,s = expr info env e in
815 816 817
                         (*TODO check if we want this flatten*)
			 let d,s = C.flatten_defs d s in
                         let d = C.group_defs_by_type d in
818 819 820
			 let s = C.elim_nop s in
			 let s = C.elim_empty_blocks s in
			 [C.Dfun (fname, (rtype,params), (d,s))]
Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
821 822 823 824 825
                      | _ ->
                         raise
                           (Unsupported
                              "Non-function with no syntax
                               in toplevel let")
826 827 828
	        end
        with Unsupported s -> Format.printf "Unsupported : %s@." s; []
      end
829 830
    | PDtype [{itd_its = its}] ->
      let id = its.its_ts.ts_name in
831
      Format.printf "PDtype %s@." id.id_string;
832 833 834
      begin
        match its.its_ts.ts_def with
        | Some def -> [C.Dtypedef (ty_of_ty info def, id)]
835 836
        | None ->
          begin match query_syntax info.syntax id with
837
          | Some _ -> []
838 839 840
          | None ->
            raise (Unsupported "type declaration without syntax or alias")
          end
841 842
      end

843 844 845 846
    | _ -> [] (*TODO exn ? *)

  let munit info = function
    | Udecl pd -> pdecl info pd
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
847
    | Uuse _m -> (*[C.Dinclude m.mod_theory.Theory.th_name]*) []
848 849 850 851 852 853 854 855 856 857 858
    | Uclone _ -> raise (Unsupported "clone")
    | Umeta _ -> raise (Unsupported "meta")
    | Uscope _ -> []

  let translate (info:info) (m:pmodule) : C.file =
    Format.printf "Translating module %s@."
      m.mod_theory.Theory.th_name.id_string;
    try List.flatten (List.map (munit info) m.mod_units)
    with
    | Unsupported s ->
      Format.printf "Failed because of unsupported construct: %s@." s; []
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
859
end
860
(*TODO simplifications : propagate constants, collapse blocks with only a statement and no def*)
861

Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
module MLToC = struct

  open Pdecl
  open Ity
  open Ty
  open Expr
  open Term
  open Printer
  open Pmodule
  open Compile.ML
  open C

  let rec ty_of_mlty info = function
    | Tvar tv ->
      begin match query_syntax info.syntax tv.tv_name
        with
        | Some s -> C.Tsyntax (s, [])
        | None -> C.Tnamed (tv.tv_name)
      end
    | Tapp (id, tl) ->
       begin match query_syntax info.syntax id
        with
        | Some s -> C.Tsyntax (s, List.map (ty_of_mlty info) tl)
        | None -> C.Tnosyntax
       end
    | Ttuple _ -> raise (Unsupported "type tuple")

  let rec ty_of_ty info ty = (*FIXME try to use only ML tys*)
    match ty.ty_node with
    | Tyvar v ->
      begin match query_syntax info.syntax v.tv_name
        with
        | Some s -> C.Tsyntax (s, [])
        | None -> C.Tnamed (v.tv_name)
      end
    | Tyapp (ts, tl) ->
       begin match query_syntax info.syntax ts.ts_name
        with
        | Some s -> C.Tsyntax (s, List.map (ty_of_ty info) tl)
        | None -> C.Tnosyntax
       end

  let ity_of_expr e = match e.e_ity with
    | I i -> i
    | _ -> assert false

  let pv_name pv = pv.pv_vs.vs_name

  type syntax_env = { in_unguarded_loop : bool;
                      computes_return_value : bool;
		      returns_tuple: bool * ident list;
                      breaks : Sid.t;
                      returns : Sid.t; }


  let is_true e = match e.e_node with
    | Eapp (s, []) -> rs_equal s rs_true
    | _ -> false

  let is_false e = match e.e_node with
    | Eapp (s, []) -> rs_equal s rs_false
    | _ -> false

  let is_unit = function
    | I i -> ity_equal i Ity.ity_unit
    | C _ -> false

  let return_or_expr env (e:C.expr) =
    if env.computes_return_value
    then Sreturn e
    else Sexpr e

  let rec expr info env (e:Compile.ML.expr) : C.body =
    assert (not e.e_effect.eff_ghost);
    match e.e_node with
    | Eblock [] ->
       if env.computes_return_value
       then C.([], Sreturn(Enothing))
       else C.([], Snop)
    | Eblock [_] -> assert false
    | Eblock l ->
       let env_not_tail = { env with computes_return_value = false } in
       let rec aux = function
         | [] ->
            if env.computes_return_value
            then C.([], Sreturn(Enothing))
            else C.([], Snop)
         | h::t -> ([], C.Sseq (C.Sblock (expr info env_not_tail h),
                                C.Sblock (aux t)))
       in
       aux l
    | Eapp (rs, []) when rs_equal rs rs_true ->
       ([],return_or_expr env (C.Econst (Cint "1")))
    | Eapp (rs, []) when rs_equal rs rs_false ->
       ([],return_or_expr env (C.Econst (Cint "0")))
    | Evar pv ->
       let e = C.Evar (pv_name pv) in
       ([], return_or_expr env e)
    | Econst ic ->
      let n = Number.compute_int ic in
      let e = C.(Econst (Cint (BigInt.to_string n))) in
      ([], return_or_expr env e)
    | Eapp (rs, el) ->
       if is_rs_tuple rs && env.computes_return_value
	 then begin
	     match env.returns_tuple with
	     | true, rl ->
		let args =
                  List.filter
                    (fun e ->
                      assert (not e.e_effect.eff_ghost);
                      match e.e_ity with
                      | I i when ity_equal i Ity.ity_unit -> false
                      | _ -> true)
		    el
                in
		assert (List.length rl = List.length args);
                let env_f = { env with computes_return_value=false } in
		C.([],
		   List.fold_right2
                     (fun res arg acc ->
                       let d,s = expr info env_f arg in
                       let s = assignify (Eunop(Ustar,Evar(res))) s in
		       Sseq(Sblock(d,s),
			    acc))
		     rl args (Sreturn(Enothing)))
	     | _ -> assert false
	   end
       else
	   let e =
             match
               (query_syntax info.syntax rs.rs_name,
                query_syntax info.converter rs.rs_name) with
               | _, Some s
               | Some s, _ ->
                 begin
                   try
                     let _ =
                       Str.search_forward
                         (Str.regexp "[%]\\([tv]?\\)[0-9]+") s 0 in
                     let env_f = { env
                                 with computes_return_value = false } in
                     let params =
		       List.map
                         (fun e ->
                           (simplify_expr (expr info env_f e),
                            ty_of_ty info (ty_of_ity (ity_of_expr e))))
		         el in
		     let rty = ty_of_ity (match e.e_ity with
                                           | C _ -> assert false
                                           | I i -> i) in
		     let rtyargs = match rty.ty_node with
		       | Tyvar _ -> [||]
		       | Tyapp (_,args) ->
                         Array.of_list (List.map (ty_of_ty info) args)
		     in
		     C.Esyntax(s,ty_of_ty info rty, rtyargs, params,
                               Mid.mem rs.rs_name info.converter)
                   with Not_found ->
		     let args =
                       List.filter
                         (fun e ->
                           assert (not e.e_effect.eff_ghost);
                           match e.e_ity with
                           | I i when ity_equal i Ity.ity_unit -> false
                           | _ -> true)
		         el
                     in
                     if args=[]
                     then C.(Esyntax(s, Tnosyntax, [||], [], true)) (*constant*)
                     else
                       (*function defined in the prelude *)
                       let env_f =
                         { env with computes_return_value = false } in
		     C.(Ecall(Esyntax(s, Tnosyntax, [||], [], true),
			      List.map
                                (fun e ->
                                  simplify_expr (expr info env_f e))
                                el))
                 end
               | _ ->
                  let args =
                    List.filter
                      (fun e ->
                        assert (not e.e_effect.eff_ghost);
                        match e.e_ity with
                        | I i when ity_equal i Ity.ity_unit -> false
                        | _ -> true)
		      el in
                  let env_f =
                    { env with computes_return_value = false } in
		 C.(Ecall(Evar(rs.rs_name), List.map
                                (fun e ->
                                  simplify_expr (expr info env_f e))
                                args))
         in
	   C.([],
              if env.computes_return_value
	      then
                if (ity_equal rs.rs_cty.cty_result Ity.ity_unit)
                then Sseq(Sexpr e, Sreturn Enothing)
                else Sreturn e
              else Sexpr e)
    | Elet (ld,e) ->
       begin match ld with
       | Lvar (pv,le) -> (* not a block *)
          begin
          match le.e_node with
          | Econst ic ->
            let n = Number.compute_int ic in
            let ce = C.(Econst (Cint (BigInt.to_string n))) in
	    Format.printf "propagate constant %s for var %s@."
			  (BigInt.to_string n) (pv_name pv).id_string;
            C.propagate_in_block (pv_name pv) ce (expr info env e)
          | Eapp (rs,_) when Mid.mem rs.rs_name info.converter ->
            begin match expr info {env with computes_return_value = false} le
              with
            | [], C.Sexpr(se) ->
              C.propagate_in_block (pv_name pv) se (expr info env e)
            | _ -> assert false
            end
          | _->
            let t = ty_of_ty info (ty_of_ity pv.pv_ity) in
            match expr info {env with computes_return_value = false} le with
            | [], C.Sexpr((C.Esyntax(_,_,_,_,b) as se))
                when b (* converter *) ->
              Format.printf "propagate converter for var %s@."
                (pv_name pv).id_string;
              C.propagate_in_block (pv_name pv) se (expr info env e)
            | d,s ->
              let initblock = d, C.assignify (Evar (pv_name pv)) s in
              [ C.Ddecl (t, [pv_name pv, C.Enothing]) ],
              C.Sseq (C.Sblock initblock, C.Sblock (expr info env e))
          end
      | Lsym _ -> raise (Unsupported "LDsym")
      | Lrec _ -> raise (Unsupported "LDrec") (* TODO for rec at least*)
       end
    | Eif (cond, th, el) ->
       let c = expr info {env with computes_return_value = false} cond in
       let t = expr info env th in
       let e = expr info env el in
       begin match c with
	     | [], C.Sexpr c ->
		if is_false th && is_true el
		then C.([], Sexpr(Eunop(Unot, c)))
		else [], C.Sif(c,C.Sblock t, C.Sblock e)
	     | cdef, cs ->
		let cid = id_register (id_fresh "cond") in (* ? *)
		C.Ddecl (C.Tsyntax ("int",[]), [cid, C.Enothing])::cdef,
		C.Sseq (C.assignify (Evar cid) cs,
                        C.Sif (C.Evar cid, C.Sblock t, C.Sblock e))
       (* TODO detect empty branches and replace with Snop, detect and/or*)
       end
    | Ewhile (c,b) ->
       Format.printf "while@.";
      let cd, cs = expr info {env with computes_return_value = false} c in
      (* this is needed so that the extracted expression has all
         needed variables in its scope *)
      let cd, cs = C.flatten_defs cd cs in
      let cd = C.group_defs_by_type cd in
      let env' = { computes_return_value = false;
                   in_unguarded_loop = true;
		   returns_tuple = env.returns_tuple;
                   returns = env.returns;
                   breaks =
                     if env.in_unguarded_loop
                     then Sid.empty else env.breaks } in
      let b = expr info  env' b in
      begin match cs with
      | C.Sexpr ce -> cd, C.Swhile (ce, C.Sblock b)
      | _ ->
        begin match C.get_last_expr cs with
        | C.Snop, e -> cd, C.(Swhile(e, C.Sblock b))
        | s,e -> cd, C.(Swhile(Econst (Cint "1"),
                     Sseq(s,
                          Sseq(Sif(Eunop(Unot, e), Sbreak, Snop),
                               C.Sblock b))))
        end
      end
    | Etry (b,xl) ->
      Format.printf "TRY@.";
      let is_while = match b.e_node with Ewhile _ -> true | _-> false in
      let breaks, returns = List.fold_left
        (fun (bs,rs) (xs, pvsl, r) ->
          let id = xs.xs_name in
          match pvsl, r.e_node with
          | [pv], Evar pv' when pv_equal pv pv' && env.computes_return_value ->
            (bs, Sid.add id rs)
          | [], (Eblock []) when is_unit r.e_ity && is_while ->
            (Sid.add id bs, rs)
          |_ -> raise (Unsupported "non break/return exception in try"))
        (Sid.empty, env.returns) xl
      in
      let env' = { computes_return_value = env.computes_return_value;
                   in_unguarded_loop = false;
		   returns_tuple = env.returns_tuple;
                   breaks = breaks;
                   returns = returns;
                 } in
      expr info env' b
    | Eraise (xs,_) when Sid.mem xs.xs_name env.breaks ->
      Format.printf "BREAK@.";
      ([], C.Sbreak)
    | Eraise (xs, Some r) when Sid.mem xs.xs_name env.returns ->
      Format.printf "RETURN@.";
      expr info {env with computes_return_value = true} r
    | Eraise (xs, None) -> assert false (* nothing to pass to return *)
    | Eraise _ -> raise (Unsupported "non break/return exception raised")
    | Efor _ -> raise (Unsupported "for loops")  (*TODO*)
    | Ematch (e1, [Ptuple rets,e2])
         when List.for_all
                (function Pvar _ -> true |_-> false)
                rets
      ->
      let rets, defs = List.fold_right
        (fun p (r, d)-> match p with
        | Pvar vs -> (C.(Eunop(Uaddr,Evar vs.vs_name))::r,
		        C.Ddecl(ty_of_ty info vs.vs_ty,
                                [vs.vs_name, C.Enothing])::d)
        | _ -> assert false )
        rets ([], []) in
      let d,s = expr info {env with computes_return_value = false} e1 in
      let s' = C.add_to_last_call rets s in
      let b = expr info env e2 in
      d@defs, C.(Sseq(s', Sblock b))
    | Ematch _ -> raise (Unsupported "pattern matching")
    | Eabsurd -> assert false
    | Eassign _ -> raise (Unsupported "assign")
    | Ehole -> assert false
    | Efun _ -> raise (Unsupported "higher order")

  let translate_decl (info:info) (d:decl) : C.definition option
    =
    match d with
    | Dlet (Lsym(rs, ty, vl, e)) ->
       if rs_ghost rs
       then begin Format.printf "is ghost@."; None end
       else
         begin try
           let params =
             List.map (fun (id, ty, _gh) -> (ty_of_mlty info ty, id))
                      (List.filter (fun (id, ty, gh) -> not gh) vl) in
	   let env = { computes_return_value = true;
		       in_unguarded_loop = false;
		       returns_tuple = false, [];
		       returns = Sid.empty;
		       breaks = Sid.empty; } in
	   let rity = rs.rs_cty.cty_result in
	   let is_simple_tuple ity =
	     let arity_zero = function
	       | Ityapp(_,a,r) -> a = [] && r = []
	       | Ityreg { reg_args = a; reg_regs = r } ->
                  a = [] && r = []
	       | Ityvar _ -> true
	     in
	     (match ity.ity_node with
	      | Ityapp ({its_ts = s},_,_)
                | Ityreg { reg_its = {its_ts = s}; }
		-> is_ts_tuple s
	      | _ -> false)
	     && (ity_fold
                   (fun acc ity ->
                     acc && arity_zero ity.ity_node) true ity)
	   in
	   (* FIXME is it necessary to have arity 0 in regions ?*)
	   let rtype =
	     if ity_equal rity Ity.ity_unit
	     then C.Tvoid
	     else ty_of_ty info (ty_of_ity rity) in
	   let env, rtype, params = match rtype with
	     | C.Tnosyntax when is_simple_tuple rity ->
		(* instead of returning a tuple, return
			      void and assign the result to addresses
			      passed as parameters *)
		let returns =
		  let f ity b acc =
		    if b.its_visible
		    then (C.Tptr(ty_of_ty info (ty_of_ity ity)),
			  id_register (id_fresh "result"))::acc
		    else acc
		  in
		  match rity.ity_node with
		  | Ityapp(s, tl,_)
		    | Ityreg { reg_its = s; reg_args = tl } ->
		     List.fold_right2 f tl s.its_arg_flg []
		  | Ityvar _ -> assert false
		in
		{env with returns_tuple = true, List.map snd returns},
		C.Tvoid,
		returns@params
	     | _ -> env, rtype, params
	   in
	   let d,s = expr info env e in
           (*TODO check if we want this flatten*)
	   let d,s = C.flatten_defs d s in
           let d = C.group_defs_by_type d in
	   let s = C.elim_nop s in
	   let s = C.elim_empty_blocks s in
	   Some
             (C.Dfun (rs.rs_name, (rtype,params), (d,s)))
           with  Unsupported s ->
             Format.printf "Unsupported : %s@." s; None
         end
    | Dtype [{its_name=id; its_def=idef}] ->
      Format.printf "PDtype %s@." id.id_string;
      begin
        match idef with
        | Some (Dalias ty) -> Some (C.Dtypedef (ty_of_mlty info ty, id))
        | Some _ -> raise (Unsupported "Ddata/Drecord")
        | None ->
          begin match query_syntax info.syntax id with
          | Some _ -> None
          | None ->
            raise (Unsupported "type declaration without syntax or alias")
          end
      end

    | _ -> None (*TODO exn ? *)

  let translate_decl (info:info) (d:Compile.ML.decl) : C.definition option
    =
    let decide_print id = query_syntax info.syntax id = None in
    match Compile.ML.get_decl_name d with
    | [id] when decide_print id -> translate_decl info d
    | [_] -> None
    | _ -> raise (Unsupported "no name or recursive defs")


end


1293 1294 1295 1296 1297 1298
let fg ?fname m =
  let n = m.Pmodule.mod_theory.Theory.th_name.Ident.id_string in
  match fname with
  | None -> n ^ ".c"
  | Some f -> f ^ "__" ^ n ^ ".c"

1299
let pr args ?old ?fname ~flat m fmt _d =
1300
  ignore(old);
1301
  let ast = Translate.translate args m in
Raphaël Rieu-Helft's avatar
Raphaël Rieu-Helft committed
1302
  try Print.print_file fmt args ast
1303 1304
  with Print.Unprinted s -> (Format.printf "Could not print: %s@." s;
		       Format.fprintf fmt "/* Dummy file */@.")
1305

Raphael Rieu-Helft's avatar
Raphael Rieu-Helft committed
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
let print_decl args ?old ?fname ~flat m fmt d =
  ignore old;
  ignore fname;
  ignore flat; (*FIXME*)
  let cds = MLToC.translate_decl args d in
  match cds with
  | None -> ()
  | Some cd -> Format.fprintf fmt "%a@." Print.print_def cd

let () =
  Pdriver.register_printer "c" ~desc:"printer for C code" fg print_decl