parser.mly 29.6 KB
Newer Older
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2015   --   INRIA - CNRS - Paris-Sud University  *)
5 6 7 8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11 12 13 14

%{
  open Ptree

15
  let infix  s = "infix "  ^ s
16
  let prefix s = "prefix " ^ s
Andrei Paskevich's avatar
Andrei Paskevich committed
17
  let mixfix s = "mixfix " ^ s
18

19
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
Andrei Paskevich's avatar
Andrei Paskevich committed
20

21
  let floc s e = Loc.extract (s,e)
Andrei Paskevich's avatar
Andrei Paskevich committed
22

23
  let add_lab id l = { id with id_lab = l }
24

25
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
26

27
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
28

29 30
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
31 32 33
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
34

35 36
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
37
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
38

39 40 41
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
42
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
43 44 45 46 47 48
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
49
    sp_reads   = [];
50 51
    sp_writes  = [];
    sp_variant = [];
52 53
    sp_checkrw = false;
    sp_diverge = false;
54
  }
55

56 57 58 59
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
60
    sp_reads   = s1.sp_reads @ s2.sp_reads;
61 62
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
63 64
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
65
  }
66

67
(* dead code
68
  let add_init_mark e =
69
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
70
    { e with expr_desc = Emark (init, e) }
71
*)
72

73
  let small_integer i =
74
    try match i with
75 76 77 78
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
79
    with Failure _ -> raise Error
80

81 82
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
83

84 85 86 87 88
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
89 90
%}

91
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
92

93
%token <string> LIDENT UIDENT
94
%token <Ptree.integer_constant> INTEGER
95
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
96 97
%token <Ptree.real_constant> FLOAT
%token <string> STRING
98
%token <Loc.position> POSITION
99
%token <string> QUOTE_LIDENT
100

101
(* keywords *)
102

103
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
104 105
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
106
%token LET MATCH META NOT PREDICATE SCOPE
Andrei Paskevich's avatar
Andrei Paskevich committed
107
%token THEN THEORY TRUE TYPE USE WITH
108

109
(* program keywords *)
110

111
%token ABSTRACT ABSURD ANY ASSERT ASSUME AT BEGIN CHECK
112
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
113
%token FUN GHOST INVARIANT LABEL MODULE MUTABLE OLD
114 115
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
116

117
(* symbols *)
118

Andrei Paskevich's avatar
Andrei Paskevich committed
119
%token AND ARROW
120
%token BAR
121
%token COLON COMMA
122
%token DOT DOTDOT EQUAL LTGT
123
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
124
%token LARROW LRARROW OR
125
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
126
%token UNDERSCORE
127 128 129

%token EOF

130
(* program symbols *)
131

132
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
133

134
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
135

136
%nonassoc IN
137 138 139
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
140
%nonassoc prec_no_else
141
%nonassoc DOT ELSE GHOST
142
%nonassoc prec_named
143
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
144

Andrei Paskevich's avatar
Andrei Paskevich committed
145
%right ARROW LRARROW
146 147
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
148
%nonassoc NOT
149
%left EQUAL LTGT OP1
150
%nonassoc AT OLD
151
%nonassoc LARROW
152
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
153
%left OP2
154
%left OP3
155
%left OP4
156
%nonassoc prec_prefix_op
157 158
%nonassoc LEFTSQ
%nonassoc OPPREF
159

160
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
161

162
%start <Pmodule.pmodule Stdlib.Mstr.t> mlw_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
163 164
%%

165 166
(* Theories, modules, namespaces *)

167 168 169 170 171
mlw_file:
| theory_or_module* EOF { Typing.close_file () }
(* TODO
| module_decl* EOF { Typing.close_file () }
*)
172

173
theory_or_module:
174 175
| module_head module_decl* END
    { Typing.close_module (floc $startpos($3) $endpos($3)) }
176

177
module_head:
178 179
| THEORY labels(uident)  { Typing.open_module $2 ~theory:true  }
| MODULE labels(uident)  { Typing.open_module $2 ~theory:false }
180

181
module_decl:
182 183
| decl            { Typing.add_decl  (floc $startpos $endpos) $1 }
| use_clone       { Typing.use_clone (floc $startpos $endpos) $1 }
184
| namespace_head module_decl* END
185
    { Typing.close_namespace (floc $startpos($1) $endpos($1)) ~import:$1 }
186

187
namespace_head:
188
| SCOPE boption(IMPORT) uident  { Typing.open_namespace $3; $2 }
189

190
(* Use and clone *)
191

192
use_clone:
193 194 195
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
196

197
use:
198
| boption(IMPORT) tqualid
Andrei Paskevich's avatar
Andrei Paskevich committed
199
    { { use_module = $2; use_import = Some ($1, qualid_last $2) } }
200
| boption(IMPORT) tqualid AS uident
Andrei Paskevich's avatar
Andrei Paskevich committed
201
    { { use_module = $2; use_import = Some ($1, $4.id_str) } }
202
| EXPORT tqualid
Andrei Paskevich's avatar
Andrei Paskevich committed
203
    { { use_module = $2; use_import = None } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
204

205
clone_subst:
206
| SCOPE     ns     EQUAL ns     { CSns    (floc $startpos $endpos, $2,$4) }
207
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
208 209 210 211 212 213
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
214

215 216 217
ns:
| uqualid { Some $1 }
| DOT     { None }
218

219 220 221 222 223 224 225 226 227 228 229 230 231
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
232
| pdecl                                     { $1 }
233 234

meta_arg:
235 236 237 238
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
239 240 241
| AXIOM     qualid  { Max $2 }
| LEMMA     qualid  { Mlm $2 }
| GOAL      qualid  { Mgl $2 }
242 243
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
244 245

(* Type declarations *)
246 247

type_decl:
248 249
| labels(lident) ty_var* typedefn invariant*
  { let (vis, mut), def = $3 in
250
    { td_ident = $1; td_params = $2;
251 252 253
      td_vis = vis; td_mut = mut;
      td_inv = $4; td_def = def;
      td_loc = floc $startpos $endpos } }
254

255
ty_var:
256
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
257

258 259 260 261 262 263 264 265
(* TODO: should global "mutable" imply "private"?
  "type t 'a = mutable { x : int }"
    - if "x" is immutable then the type can only be private
    - if "x" is automatically mutable then I don't like it
    - if there are known mutable fields, then a global "mutable"
      is redundant, unless it also means "private" *)
(* TODO: what should be the syntax for mutable private records
    without known fields? *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
266
typedefn:
267
| (* epsilon *)
268 269 270 271 272 273 274 275 276 277 278 279 280 281
    { (Public, false), TDabstract }
| EQUAL vis_mut bar_list1(type_case)
    { $2, TDalgebraic $3 }
| EQUAL vis_mut LEFTBRC semicolon_list1(type_field) RIGHTBRC
    { $2, TDrecord $4 }
| EQUAL vis_mut ty
    { $2, TDalias $3 }

vis_mut:
| (* epsilon *)     { Public, false }
| MUTABLE           { Public, true  }
| abstract          { $1, false }
| abstract MUTABLE  { $1, true }
| MUTABLE abstract  { $2, true }
282 283

abstract:
284 285
| PRIVATE           { Private }
| ABSTRACT          { Abstract }
286

287 288 289 290
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
291

292
field_modifiers:
293
| (* epsilon *) { false, false }
294 295 296 297 298
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

299
type_case:
300
| labels(uident) params { floc $startpos $endpos, $1, $2 }
301

302
(* Logic declarations *)
303

304 305
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
306 307
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
308

309 310
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
311 312
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
313

314 315
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
316 317
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
318

319
with_logic_decl:
320
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
321 322
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
323

324
(* Inductive declarations *)
325 326

inductive_decl:
327
| labels(lident_rich) params ind_defn
328 329
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
330

331 332 333
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
334

335 336
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
337

338
(* Type expressions *)
339

340 341 342 343
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
344

345 346
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
347
| quote_lident                      { PTtyvar $1 }
348 349 350
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
351

352 353
cast:
| COLON ty  { $2 }
354

355
(* Parameters and binders *)
356

357 358
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
359 360
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
361 362
   names, whose type must be inferred. *)

363
params:  param*  { List.concat $1 }
364

365
binders: binder+ { List.concat $1 }
366 367 368

param:
| anon_binder
369 370 371 372 373 374 375 376
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
377 378
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
379
| LEFTPAR binder_vars_rest RIGHTPAR
380
    { match $2 with [l,_] -> error_param l
381
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
382
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
383
    { match $3 with [l,_] -> error_param l
384 385
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
386
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
387
| LEFTPAR GHOST binder_vars cast RIGHTPAR
388
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
389

390 391
binder:
| anon_binder
392 393 394 395 396
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
397 398
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
399 400 401
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
402 403
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
404 405 406
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
407 408 409
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
410
| LEFTPAR binder_vars_rest RIGHTPAR
411
    { match $2 with [l,i] -> [l, i, false, None]
412
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
413
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
414
    { match $3 with [l,i] -> [l, i, true, None]
415 416
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
417
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
418
| LEFTPAR GHOST binder_vars cast RIGHTPAR
419
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
420

421 422 423
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
424

425
binder_vars_rest:
426 427 428 429 430 431 432
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
433
   { List.rev_append $1 ($2 :: $3) }
434
| anon_binder binder_var*
435
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
436

437
binder_vars_head:
438
| ty {
439 440
    let of_id id = id.id_loc, Some id in
    let push acc = function
441
      | PTtyapp (Qident id, []) -> of_id id :: acc
442
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
443
    match $1 with
444
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
445
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
446

447
binder_var:
448 449
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
450 451

anon_binder:
452 453
| UNDERSCORE      { floc $startpos $endpos, None }

454 455 456 457 458 459 460 461 462 463 464 465
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
466 467 468 469
| OLD term
    { Tat ($2, mk_id "0" $startpos($1) $endpos($1)) }
| term AT uident
    { Tat ($1, $3) }
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
487 488 489 490 491
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
492
      | _ -> Tmatch ($4, [$2, $6]) }
493 494 495 496 497 498
| LET labels(lident_op_id) EQUAL term IN term
    { Tlet ($2, $4, $6) }
| LET labels(lident) mk_term(lam_defn) IN term
    { Tlet ($2, $3, $5) }
| LET labels(lident_op_id) mk_term(lam_defn) IN term
    { Tlet ($2, $3, $5) }
499 500 501 502 503 504
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
505 506
| FUN binders ARROW term
    { Tquant (Tlambda, $2, [], $4) }
507 508 509 510 511 512 513
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

514 515 516
lam_defn:
| binders EQUAL term  { Tquant (Tlambda, $1, [], $3) }

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
544 545 546 547 548 549
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
550

551 552
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
553

554 555
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
556

557 558
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
559

560 561 562
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
563

564 565 566 567 568 569 570
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
571

572 573 574
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
575

576 577 578
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
579

580
(* Program declarations *)
581

582
pdecl:
583 584
| VAL ghost kind labels(lident_rich) mk_expr(val_defn) { Dlet ($4, $2, $3, $5) }
| LET ghost kind labels(lident_rich) mk_expr(fun_defn) { Dlet ($4, $2, $3, $5) }
585
| LET ghost kind labels(lident_rich) EQUAL seq_expr    { Dlet ($4, $2, $3, $6) }
586 587 588 589 590 591 592 593 594 595 596 597 598 599
| LET REC with_list1(rec_defn)                         { Drec $3 }
| EXCEPTION labels(uident)                             { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                          { Dexn ($2, $3) }

ghost:
| (* epsilon *) { false }
| GHOST         { true }

kind:
| (* epsilon *) { Expr.RKnone }
| FUNCTION      { Expr.RKfunc }
| CONSTANT      { Expr.RKfunc }
| PREDICATE     { Expr.RKpred }
| LEMMA         { Expr.RKlemma }
600 601

(* Function definitions *)
602

603
rec_defn:
604 605
| ghost kind labels(lident_rich) binders cast? spec EQUAL spec seq_expr
    { $3, $1, $2, $4, $5, spec_union $6 $8, $9 }
606

607
fun_defn:
608
| binders cast? spec EQUAL spec seq_expr
609
    { Efun ($1, $2, spec_union $3 $5, $6) }
610

611 612
val_defn:
| params cast spec  { Eany ($1, $2, $3) }
613

614 615 616 617 618 619 620 621
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
622

623
expr: e = mk_expr(expr_) { e }
624 625 626

expr_:
| expr_arg_
627 628
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
629 630 631 632
| expr AMPAMP expr
    { Eand ($1, $3) }
| expr BARBAR expr
    { Eor ($1, $3) }
633
| NOT expr
634
    { Enot $2 }
635
| prefix_op expr %prec prec_prefix_op
636 637 638 639 640 641
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
642
| IF seq_expr THEN expr ELSE expr
643
    { Eif ($2, $4, $6) }
644
| IF seq_expr THEN expr %prec prec_no_else
645 646 647 648 649 650 651
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
652 653 654 655 656 657
| LET ghost kind pattern EQUAL seq_expr IN seq_expr
    { match $4.pat_desc with
      | Pvar id -> Elet (id, $2, $3, $6, $8)
      | Pwild -> Elet (id_anonymous $4.pat_loc, $2, $3, $6, $8)
      | Ptuple [] -> Elet (id_anonymous $4.pat_loc, $2, $3,
          { $6 with expr_desc = Ecast ($6, PTtuple []) }, $8)
658
      | Pcast ({pat_desc = Pvar id}, ty) ->
659
          Elet (id, $2, $3, { $6 with expr_desc = Ecast ($6, ty) }, $8)
660
      | Pcast ({pat_desc = Pwild}, ty) ->
661 662
          let id = id_anonymous $4.pat_loc in
          Elet (id, $2, $3, { $6 with expr_desc = Ecast ($6, ty) }, $8)
663
      | _ ->
664 665 666 667 668 669 670 671 672 673 674
          let e = if $2 then { $6 with expr_desc = Eghost $6 } else $6 in
          (match $3 with
          | Expr.RKnone -> Ematch (e, [$4, $8])
          | _ -> Loc.errorm ~loc:($4.pat_loc)
              "`let <kind>' cannot be used with complex patterns") }
| LET ghost kind labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($4, $2, $3, $6, $8) }
| LET ghost kind labels(lident) mk_expr(fun_defn) IN seq_expr
    { Elet ($4, $2, $3, $5, $7) }
| LET ghost kind labels(lident_op_id) mk_expr(fun_defn) IN seq_expr
    { Elet ($4, $2, $3, $5, $7) }
675
| LET REC with_list1(rec_defn) IN seq_expr
676
    { Erec ($3, $5) }
677
| FUN binders spec ARROW spec seq_expr
678 679 680
    { Efun ($2, None, spec_union $3 $5, $6) }
| ABSTRACT spec seq_expr END
    { Efun ([], None, $2, $3) }
681 682
| ANY ty spec
    { Eany ([], $2, $3) }
683 684
| VAL ghost kind labels(lident_rich) mk_expr(val_defn) IN seq_expr
    { Elet ($4, $2, $3, $5, $7) }
685 686 687 688
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
689 690
| LABEL labels(uident) IN seq_expr
    { Emark ($2, $4) }
691
| WHILE seq_expr DO loop_annotation seq_expr DONE
692
    { let inv, var = $4 in Ewhile ($2, inv, var, $5) }
693 694
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
695
| ABSURD
696
    { Eabsurd }
697 698 699 700
| RAISE uqualid expr_arg?
    { Eraise ($2, $3) }
| RAISE LEFTPAR uqualid expr_arg? RIGHTPAR
    { Eraise ($3, $4) }
701 702
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
703
| GHOST expr
704 705 706
    { Eghost $2 }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
707
| label expr %prec prec_named
708 709 710
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
711

712 713
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
714 715

expr_arg_:
716 717 718 719 720 721 722 723 724 725 726
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
727 728

expr_sub:
729
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
730 731 732 733 734 735 736
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
737
| expr_arg LEFTSQ expr RIGHTSQ
738
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
739
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
740
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
741 742 743 744 745 746
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
747

748 749
loop_annotation:
| (* epsilon *)
750
    { [], [] }
751
| invariant loop_annotation
752
    { let inv, var = $2 in $1 :: inv, var }
753
| variant loop_annotation
754
    { let inv, var = $2 in inv, variant_union $1 var }
755

756 757
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
758 759

assertion_kind:
760 761 762
| ASSERT  { Expr.Assert }
| ASSUME  { Expr.Assume }
| CHECK   { Expr.Check }
763 764

for_direction:
765 766
| TO      { Expr.To }
| DOWNTO  { Expr.DownTo }
767

768
(* Specification *)
769

770
spec:
771
| (* epsilon *)     { empty_spec }
772
| single_spec spec  { spec_union $1 $2 }
773

774
single_spec:
775
| REQUIRES LEFTBRC term RIGHTBRC
776 777
    { { empty_spec with sp_pre = [$3] } }
| ENSURES LEFTBRC ensures RIGHTBRC
778
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
779
| RETURNS LEFTBRC match_cases(term) RIGHTBRC
780 781 782 783
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
| RAISES LEFTBRC bar_list1(raises) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
| READS  LEFTBRC comma_list0(lqualid) RIGHTBRC
784
    { { empty_spec with sp_reads = $3; sp_checkrw = true } }
785
| WRITES LEFTBRC comma_list0(term) RIGHTBRC
786
    { { empty_spec with sp_writes = $3; sp_checkrw = true } }
787 788
| RAISES LEFTBRC comma_list1(xsymbol) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
789 790
| DIVERGES
    { { empty_spec with sp_diverge = true } }
791 792
| variant
    { { empty_spec with sp_variant = $1 } }
793

794
ensures:
795
| term
796
    { let id = mk_id "result" $startpos $endpos in
797
      [mk_pat (Pvar id) $startpos $endpos, $1] }
798

799
raises:
800 801 802
| uqualid ARROW term
    { $1, mk_pat (Ptuple []) $startpos($1) $endpos($1), $3 }
| uqualid pat_arg ARROW term
803
    { $1,