parser.mly 31.8 KB
Newer Older
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2015   --   INRIA - CNRS - Paris-Sud University  *)
5 6 7 8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11 12

%{
13
module Incremental = struct
14 15 16 17 18 19 20
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
21 22
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
23 24 25
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
26
end
27

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
28 29
  open Ptree

30
  let infix  s = "infix "  ^ s
31
  let prefix s = "prefix " ^ s
Andrei Paskevich's avatar
Andrei Paskevich committed
32
  let mixfix s = "mixfix " ^ s
33

34
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
Andrei Paskevich's avatar
Andrei Paskevich committed
35

36
  let floc s e = Loc.extract (s,e)
Andrei Paskevich's avatar
Andrei Paskevich committed
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  let model_label = Ident.create_label "model"

  let is_model_label l =
    match l with
    | Lpos _ -> false
    | Lstr lab ->
      lab = model_label

  let model_lab_present labels = 
    try
      ignore(List.find is_model_label labels);
      true
    with Not_found ->
      false

  let model_trace_regexp = Str.regexp "model_trace:"

  let is_model_trace_label l =
    match l with
    | Lpos _ -> false
    | Lstr lab -> 
      try
	ignore(Str.search_forward model_trace_regexp lab.lab_string 0);
	true
      with Not_found -> false

  let model_trace_lab_present labels =
    try
      ignore(List.find is_model_trace_label labels);
      true
    with Not_found ->
      false

  let add_model_trace name labels =
    if (model_lab_present labels) && (not (model_trace_lab_present labels)) then 
      (Lstr (Ident.create_label ("model_trace:" ^ name)))::labels
    else
      labels  

  let add_lab id l =
    let l = add_model_trace id.id_str l in
    { id with id_lab = l }
80

81
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
82

83
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
84

85 86
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
87 88 89
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
90

91 92
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
93
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
94

95 96 97
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
98
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
99 100 101 102 103 104
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
105
    sp_reads   = [];
106 107
    sp_writes  = [];
    sp_variant = [];
108 109
    sp_checkrw = false;
    sp_diverge = false;
110
  }
111

112 113 114 115
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
116
    sp_reads   = s1.sp_reads @ s2.sp_reads;
117 118
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
119 120
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
121
  }
122

123
(* dead code
124
  let add_init_mark e =
125
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
126
    { e with expr_desc = Emark (init, e) }
127
*)
128

129
  let small_integer i =
130
    try match i with
131 132 133 134
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
135
    with Failure _ -> raise Error
136

137 138
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
139

140 141 142 143 144
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
145 146
%}

147
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
148

149
%token <string> LIDENT UIDENT
150
%token <Ptree.integer_constant> INTEGER
151
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
152 153
%token <Ptree.real_constant> FLOAT
%token <string> STRING
154
%token <Loc.position> POSITION
155
%token <string> QUOTE_UIDENT QUOTE_LIDENT OPAQUE_QUOTE_LIDENT
156

157
(* keywords *)
158

159
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
160 161 162
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
Andrei Paskevich's avatar
Andrei Paskevich committed
163
%token THEN THEORY TRUE TYPE USE WITH
164

165
(* program keywords *)
166

167 168 169 170 171
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
172

173
(* symbols *)
174

Andrei Paskevich's avatar
Andrei Paskevich committed
175
%token AND ARROW
176
%token BAR
177
%token COLON COMMA
178
%token DOT DOTDOT EQUAL LAMBDA LTGT
179
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
180
%token LARROW LRARROW OR
181
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
182
%token UNDERSCORE
183 184 185

%token EOF

186
(* program symbols *)
187

188
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
189

190
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
191

192
%nonassoc IN
193 194 195
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
196
%nonassoc prec_no_else
197
%nonassoc DOT ELSE GHOST
198
%nonassoc prec_named
199
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
200

Andrei Paskevich's avatar
Andrei Paskevich committed
201
%right ARROW LRARROW
202 203
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
204
%nonassoc NOT
205
%left EQUAL LTGT OP1
206
%nonassoc LARROW
207
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
208
%left OP2
209
%left OP3
210
%left OP4
211
%nonassoc prec_prefix_op
212 213
%nonassoc LEFTSQ
%nonassoc OPPREF
214

215
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
216

217 218
%start <Ptree.incremental -> unit> open_file
%start <unit> logic_file program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
219 220
%%

221 222
(* Theories, modules, namespaces *)

223
open_file:
224 225
(* Dummy token. Menhir does not accept epsilon. *)
| EOF { Incremental.open_file }
226

Andrei Paskevich's avatar
Andrei Paskevich committed
227
logic_file:
228
| theory* EOF   { Incremental.close_file () }
229

230 231 232
program_file:
| theory_or_module* EOF { Incremental.close_file () }

233 234
theory:
| theory_head theory_decl* END  { Incremental.close_theory () }
235

236 237 238 239
theory_or_module:
| theory                        { () }
| module_head module_decl* END  { Incremental.close_module () }

240
theory_head:
241
| THEORY labels(uident)  { Incremental.open_theory $2 }
242

243 244 245
module_head:
| MODULE labels(uident)  { Incremental.open_module $2 }

246 247 248 249 250
theory_decl:
| decl            { Incremental.new_decl  (floc $startpos $endpos) $1 }
| use_clone       { Incremental.use_clone (floc $startpos $endpos) $1 }
| namespace_head theory_decl* END
    { Incremental.close_namespace (floc $startpos($1) $endpos($1)) $1 }
251

252 253 254 255 256 257
module_decl:
| decl            { Incremental.new_decl  (floc $startpos $endpos) $1 }
| pdecl           { Incremental.new_pdecl (floc $startpos $endpos) $1 }
| use_clone       { Incremental.use_clone (floc $startpos $endpos) $1 }
| namespace_head module_decl* END
    { Incremental.close_namespace (floc $startpos($1) $endpos($1)) $1 }
258

259 260 261
namespace_head:
| NAMESPACE boption(IMPORT) uident
   { Incremental.open_namespace $3.id_str; $2 }
262

263
(* Use and clone *)
264

265
use_clone:
266 267 268
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
269

270
use:
271
| boption(IMPORT) tqualid
272
    { { use_theory = $2; use_import = Some ($1, qualid_last $2) } }
273 274
| boption(IMPORT) tqualid AS uident
    { { use_theory = $2; use_import = Some ($1, $4.id_str) } }
275 276
| EXPORT tqualid
    { { use_theory = $2; use_import = None } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
277

278
clone_subst:
279 280
| NAMESPACE ns EQUAL ns         { CSns    (floc $startpos $endpos, $2,$4) }
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
281 282 283 284 285 286
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
287

288 289 290
ns:
| uqualid { Some $1 }
| DOT     { None }
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| TYPE late_invariant                       { Dtype [$2] }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
306 307

meta_arg:
308 309 310 311 312 313 314
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
| PROP      qualid  { Mpr $2 }
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
315 316

(* Type declarations *)
317 318

type_decl:
319
| labels(lident) ty_var* typedefn
320
  { let model, vis, def, inv = $3 in
321
    let vis = if model then Abstract else vis in
322 323 324
    { td_ident = $1; td_params = $2;
      td_model = model; td_vis = vis; td_def = def;
      td_inv = inv; td_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
325

326
late_invariant:
327
| labels(lident) ty_var* invariant+
328 329 330
  { { td_ident = $1; td_params = $2;
      td_model = false; td_vis = Public; td_def = TDabstract;
      td_inv = $3; td_loc = floc $startpos $endpos } }
331

332
ty_var:
333
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
334 335

typedefn:
336
| (* epsilon *)
337
    { false, Public, TDabstract, [] }
338
| model abstract bar_list1(type_case) invariant*
339
    { $1, $2, TDalgebraic $3, $4 }
340
| model abstract LEFTBRC semicolon_list1(type_field) RIGHTBRC invariant*
341
    { $1, $2, TDrecord $4, $6 }
342 343
| model abstract ty invariant*
    { $1, $2, TDalias $3, $4 }
344

345 346 347 348 349
model:
| EQUAL         { false }
| MODEL         { true }

abstract:
350
| (* epsilon *) { Public }
351 352
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
353

354 355 356 357
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
358

359
field_modifiers:
360
| (* epsilon *) { false, false }
361 362 363 364 365
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

366
type_case:
367
| labels(uident) params { floc $startpos $endpos, $1, $2 }
368

369
(* Logic declarations *)
370

371 372
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
373 374
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
375

376 377
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
378 379
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
380

381 382
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
383 384
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
385

386
with_logic_decl:
387
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
388 389
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
390

391
(* Inductive declarations *)
392 393

inductive_decl:
394
| labels(lident_rich) params ind_defn
395 396
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
397

398 399 400
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
401

402 403
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
404

405
(* Type expressions *)
406

407 408 409 410
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
411

412 413 414 415 416 417 418
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
| quote_lident                      { PTtyvar ($1, false) }
| opaque_quote_lident               { PTtyvar ($1, true) }
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
419

420 421
cast:
| COLON ty  { $2 }
422

423
(* Parameters and binders *)
424

425 426
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
427 428
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
429 430
   names, whose type must be inferred. *)

431
params:  param*  { List.concat $1 }
432

433
binders: binder+ { List.concat $1 }
434 435 436

param:
| anon_binder
437 438 439 440 441 442 443 444
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
445 446
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
447
| LEFTPAR binder_vars_rest RIGHTPAR
448
    { match $2 with [l,_] -> error_param l
449
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
450
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
451
    { match $3 with [l,_] -> error_param l
452 453
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
454
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
455
| LEFTPAR GHOST binder_vars cast RIGHTPAR
456
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
457

458 459
binder:
| anon_binder
460 461 462 463 464
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
465 466
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
467 468 469
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
470 471
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
472 473 474
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
475 476 477
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
478
| LEFTPAR binder_vars_rest RIGHTPAR
479
    { match $2 with [l,i] -> [l, i, false, None]
480
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
481
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
482
    { match $3 with [l,i] -> [l, i, true, None]
483 484
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
485
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
486
| LEFTPAR GHOST binder_vars cast RIGHTPAR
487
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
488

489 490 491
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
492

493
binder_vars_rest:
494 495 496 497 498 499 500
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
501
   { List.rev_append $1 ($2 :: $3) }
502
| anon_binder binder_var*
503
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
504

505
binder_vars_head:
506
| ty {
507 508
    let of_id id = id.id_loc, Some id in
    let push acc = function
509
      | PTtyapp (Qident id, []) -> of_id id :: acc
510
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
511
    match $1 with
512
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
513
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
514

515
binder_var:
516 517
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
518 519

anon_binder:
520 521
| UNDERSCORE      { floc $startpos $endpos, None }

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
551 552 553 554 555
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
      | _ -> Tmatch ($4, [$2, $6]) }
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| quote_uident              { Tident (Qident $1) }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
598 599 600 601 602 603
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
604

605 606
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
607

608 609
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
610

611 612
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
613

614 615 616
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
617

618 619 620 621 622 623 624
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
625

626 627 628 629
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
| LAMBDA  { Tlambda }
630

631 632 633
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
634

635
(* Program declarations *)
636

637
pdecl:
638
| VAL top_ghost labels(lident_rich) type_v          { Dval ($3, $2, $4) }
639
| LET top_ghost labels(lident_rich) fun_defn        { Dfun ($3, $2, $4) }
640
| LET top_ghost labels(lident_rich) EQUAL fun_expr  { Dfun ($3, $2, $5) }
641
| LET REC with_list1(rec_defn)                      { Drec $3 }
642 643
| EXCEPTION labels(uident)                          { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                       { Dexn ($2, $3) }
644

645 646 647 648 649 650
top_ghost:
| (* epsilon *) { Gnone  }
| GHOST         { Gghost }
| LEMMA         { Glemma }

(* Function declarations *)
651 652

type_v:
653
| arrow_type_v  { $1 }
654
| cast          { PTpure $1 }
655 656

arrow_type_v:
657
| param params tail_type_c  { PTfunc ($1 @ $2, $3) }
658 659

tail_type_c:
660 661
| single_spec spec arrow_type_v { $3, spec_union $1 $2 }
| COLON simple_type_c           { $2 }
662 663

simple_type_c:
664 665 666
| ty spec { PTpure $1, $2 }

(* Function definitions *)
667

668
rec_defn:
669
| top_ghost labels(lident_rich) binders cast? spec EQUAL spec seq_expr
670
    { $2, $1, ($3, $4, $8, spec_union $5 $7) }
671

672
fun_defn:
673
| binders cast? spec EQUAL spec seq_expr { ($1, $2, $6, spec_union $3 $5) }
674

675
fun_expr:
676 677
| FUN binders spec ARROW spec seq_expr { ($2, None, $6, spec_union $3 $5) }

678 679 680 681 682 683 684 685
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
686

687
expr: e = mk_expr(expr_) { e }
688 689 690

expr_:
| expr_arg_
691 692
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
693
| NOT expr %prec prec_prefix_op
694
    { Enot $2 }
695
| prefix_op expr %prec prec_prefix_op
696 697 698 699 700 701 702 703
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = lazy_op ; r = expr
    { Elazy (l,o,r) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
704
| IF seq_expr THEN expr ELSE expr
705
    { Eif ($2, $4, $6) }
706
| IF seq_expr THEN expr %prec prec_no_else
707 708 709 710 711 712 713
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
714
| LET top_ghost pattern EQUAL seq_expr IN seq_expr
715
    { match $3.pat_desc with
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
      | Pvar id -> Elet (id, $2, $5, $7)
      | Pwild -> Elet (id_anonymous $3.pat_loc, $2, $5, $7)
      | Ptuple [] -> Elet (id_anonymous $3.pat_loc, $2,
          { $5 with expr_desc = Ecast ($5, PTtuple []) }, $7)
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $3.pat_loc in
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | _ ->
          let e = match $2 with
            | Glemma -> Loc.errorm ~loc:($3.pat_loc)
                "`let lemma' cannot be used with complex patterns"
            | Gghost -> { $5 with expr_desc = Eghost $5 }
            | Gnone -> $5 in
          Ematch (e, [$3, $7]) }
| LET top_ghost labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($3, $2, $5, $7) }
| LET top_ghost labels(lident) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
| LET top_ghost labels(lident_op_id) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
738
| LET REC with_list1(rec_defn) IN seq_expr
739
    { Erec ($3, $5) }
740
| fun_expr
741 742 743 744 745 746 747
    { Elam $1 }
| VAL top_ghost labels(lident_rich) mk_expr(val_expr) IN seq_expr
    { Elet ($3, $2, $4, $6) }
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
748
| quote_uident COLON seq_expr
749
    { Emark ($1, $3) }
750
| LOOP loop_annotation seq_expr END
751
    { Eloop ($2, $3) }
752
| WHILE seq_expr DO loop_annotation seq_expr DONE
753 754 755
    { Ewhile ($2, $4, $5) }
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
756
| ABSURD
757
    { Eabsurd }
758
| RAISE uqualid
759
    { Eraise ($2, None) }
760
| RAISE LEFTPAR uqualid seq_expr RIGHTPAR
761 762 763
    { Eraise ($3, Some $4) }
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
764
| ANY simple_type_c
765
    { Eany $2 }
766
| GHOST expr
767
    { Eghost $2 }
768
| ABSTRACT spec seq_expr END
769 770 771
    { Eabstract($3, $2) }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
772
| label expr %prec prec_named
773 774 775
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
776

777 778
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
779 780

expr_arg_:
781 782 783 784 785 786 787 788 789 790 791
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
792 793

expr_sub:
794
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
795 796 797 798 799 800 801
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
802
| expr_arg LEFTSQ expr RIGHTSQ
803
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
804
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
805
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
806 807 808 809 810 811
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
812

813 814 815 816 817 818 819
loop_annotation:
| (* epsilon *)
    { { loop_invariant = []; loop_variant = [] } }
| invariant loop_annotation
    { let a = $2 in { a with loop_invariant = $1 :: a.loop_invariant } }
| variant loop_annotation
    { let a = $2 in { a with loop_variant = variant_union $1 a.loop_variant } }
820

821 822
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
823

824 825
val_expr:
| tail_type_c { Eany $1 }
826

827 828 829
%inline lazy_op:
| AMPAMP  { LazyAnd }
| BARBAR  { LazyOr }
830 831

assertion_kind:
832 833 834
| ASSERT  { Aassert }
| ASSUME  { Aassume }
| CHECK   { Acheck }
835 836

for_direction:
837 838
| TO      { To }
| DOWNTO  { Downto }
839

840
(* Specification *)
841

842
spec:
843
| (* epsilon *)     { empty_spec }
844
| single_spec spec  { spec_union $1 $2 }
845

846
single_spec:
847
| REQUIRES LEFTBRC term RIGHTBRC
Andrei Paskevich's avatar