parser.mly 31.9 KB
Newer Older
<
1
2
3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
Andrei Paskevich's avatar
Andrei Paskevich committed
4
(*  Copyright 2010-2016   --   INRIA - CNRS - Paris-Sud University  *)
5
6
7
8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11
12

%{
13
module Increment = struct
14
15
16
17
18
19
20
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
21
22
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
23
24
25
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
26
end
27

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
28
29
  open Ptree

30
  let infix  s = "infix "  ^ s
31
  let prefix s = "prefix " ^ s
Andrei Paskevich's avatar
Andrei Paskevich committed
32
  let mixfix s = "mixfix " ^ s
33

34
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
Andrei Paskevich's avatar
Andrei Paskevich committed
35

36
  let floc s e = Loc.extract (s,e)
Andrei Paskevich's avatar
Andrei Paskevich committed
37

38
  let model_label = Ident.create_label "model"
39
  let model_projected = Ident.create_label "model_projected"
40
41
42
43
44

  let is_model_label l =
    match l with
    | Lpos _ -> false
    | Lstr lab ->
45
46
      (lab = model_label) || (lab = model_projected)

47

48
  let model_lab_present labels =
49
50
51
52
53
54
55
56
57
58
59
    try
      ignore(List.find is_model_label labels);
      true
    with Not_found ->
      false

  let model_trace_regexp = Str.regexp "model_trace:"

  let is_model_trace_label l =
    match l with
    | Lpos _ -> false
60
    | Lstr lab ->
61
      try
62
	ignore(Str.search_forward model_trace_regexp lab.Ident.lab_string 0);
63
64
65
66
67
68
69
70
71
72
73
	true
      with Not_found -> false

  let model_trace_lab_present labels =
    try
      ignore(List.find is_model_trace_label labels);
      true
    with Not_found ->
      false

  let add_model_trace name labels =
74
    if (model_lab_present labels) && (not (model_trace_lab_present labels)) then
75
76
      (Lstr (Ident.create_label ("model_trace:" ^ name)))::labels
    else
77
      labels
78
79
80
81

  let add_lab id l =
    let l = add_model_trace id.id_str l in
    { id with id_lab = l }
82

83
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
84

85
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
86

87
88
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
89
90
91
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
92

93
94
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
95
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
96

97
98
99
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
100
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
101
102
103
104
105
106
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
107
    sp_reads   = [];
108
109
    sp_writes  = [];
    sp_variant = [];
110
111
    sp_checkrw = false;
    sp_diverge = false;
112
  }
113

114
115
116
117
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
118
    sp_reads   = s1.sp_reads @ s2.sp_reads;
119
120
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
121
122
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
123
  }
124

125
(* dead code
126
  let add_init_mark e =
127
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
128
    { e with expr_desc = Emark (init, e) }
129
*)
130

131
  let small_integer i =
132
    try match i with
133
134
135
136
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
137
    with Failure _ -> raise Error
138

139
140
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
141

142
143
144
145
146
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
147
148
%}

149
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150

151
%token <string> LIDENT UIDENT
152
%token <Ptree.integer_constant> INTEGER
153
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
154
155
%token <Ptree.real_constant> FLOAT
%token <string> STRING
156
%token <Loc.position> POSITION
157
%token <string> QUOTE_UIDENT QUOTE_LIDENT OPAQUE_QUOTE_LIDENT
158

159
(* keywords *)
160

Martin Clochard's avatar
Martin Clochard committed
161
%token AS AXIOM BY CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
162
163
164
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
Martin Clochard's avatar
Martin Clochard committed
165
%token SO THEN THEORY TRUE TYPE USE WITH
166

167
(* program keywords *)
168

169
170
171
172
173
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
174

175
(* symbols *)
176

Andrei Paskevich's avatar
Andrei Paskevich committed
177
%token AND ARROW
178
%token BAR
179
%token COLON COMMA
180
%token DOT DOTDOT EQUAL LAMBDA LTGT
181
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
182
%token LARROW LRARROW OR
183
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
184
%token UNDERSCORE
185
186
187

%token EOF

188
(* program symbols *)
189

190
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
191

192
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
193

194
%nonassoc IN
195
196
197
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
198
%nonassoc prec_no_else
199
%nonassoc DOT ELSE GHOST
200
%nonassoc prec_named
201
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
202

Andrei Paskevich's avatar
Andrei Paskevich committed
203
%right ARROW LRARROW
Martin Clochard's avatar
Martin Clochard committed
204
%right BY SO
205
206
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
207
%nonassoc NOT
208
%left EQUAL LTGT OP1
209
%nonassoc LARROW
210
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
211
%left OP2
212
%left OP3
213
%left OP4
214
%nonassoc prec_prefix_op
215
216
%nonassoc LEFTSQ
%nonassoc OPPREF
217

218
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
219

220
221
%start <Ptree.incremental -> unit> open_file
%start <unit> logic_file program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
222
223
%%

224
225
(* Theories, modules, namespaces *)

226
open_file:
227
(* Dummy token. Menhir does not accept epsilon. *)
228
| EOF { Increment.open_file }
229

Andrei Paskevich's avatar
Andrei Paskevich committed
230
logic_file:
231
| theory* EOF   { Increment.close_file () }
232

233
program_file:
234
| theory_or_module* EOF { Increment.close_file () }
235

236
theory:
237
| theory_head theory_decl* END  { Increment.close_theory () }
238

239
240
theory_or_module:
| theory                        { () }
241
| module_head module_decl* END  { Increment.close_module () }
242

243
theory_head:
244
| THEORY labels(uident)  { Increment.open_theory $2 }
245

246
module_head:
247
| MODULE labels(uident)  { Increment.open_module $2 }
248

249
theory_decl:
250
251
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
252
| namespace_head theory_decl* END
253
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
254

255
module_decl:
256
257
258
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| pdecl           { Increment.new_pdecl (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
259
| namespace_head module_decl* END
260
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
261

262
263
namespace_head:
| NAMESPACE boption(IMPORT) uident
264
   { Increment.open_namespace $3.id_str; $2 }
265

266
(* Use and clone *)
267

268
use_clone:
269
270
271
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
272

273
use:
274
| boption(IMPORT) tqualid
275
    { { use_theory = $2; use_import = Some ($1, qualid_last $2) } }
276
277
| boption(IMPORT) tqualid AS uident
    { { use_theory = $2; use_import = Some ($1, $4.id_str) } }
278
279
| EXPORT tqualid
    { { use_theory = $2; use_import = None } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
280

281
clone_subst:
282
283
| NAMESPACE ns EQUAL ns         { CSns    (floc $startpos $endpos, $2,$4) }
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
284
285
286
287
288
289
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
290

291
292
293
ns:
| uqualid { Some $1 }
| DOT     { None }
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| TYPE late_invariant                       { Dtype [$2] }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
309
310

meta_arg:
311
312
313
314
315
316
317
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
| PROP      qualid  { Mpr $2 }
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
318
319

(* Type declarations *)
320
321

type_decl:
322
| labels(lident) ty_var* typedefn
323
  { let model, vis, def, inv = $3 in
324
    let vis = if model then Abstract else vis in
325
326
327
    { td_ident = $1; td_params = $2;
      td_model = model; td_vis = vis; td_def = def;
      td_inv = inv; td_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
328

329
late_invariant:
330
| labels(lident) ty_var* invariant+
331
332
333
  { { td_ident = $1; td_params = $2;
      td_model = false; td_vis = Public; td_def = TDabstract;
      td_inv = $3; td_loc = floc $startpos $endpos } }
334

335
ty_var:
336
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
337
338

typedefn:
339
| (* epsilon *)
340
    { false, Public, TDabstract, [] }
341
| model abstract bar_list1(type_case) invariant*
342
    { $1, $2, TDalgebraic $3, $4 }
343
| model abstract LEFTBRC semicolon_list1(type_field) RIGHTBRC invariant*
344
    { $1, $2, TDrecord $4, $6 }
345
346
| model abstract ty invariant*
    { $1, $2, TDalias $3, $4 }
347

348
349
350
351
352
model:
| EQUAL         { false }
| MODEL         { true }

abstract:
353
| (* epsilon *) { Public }
354
355
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
356

357
358
359
360
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
361

362
field_modifiers:
363
| (* epsilon *) { false, false }
364
365
366
367
368
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

369
type_case:
370
| labels(uident) params { floc $startpos $endpos, $1, $2 }
371

372
(* Logic declarations *)
373

374
375
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
376
377
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
378

379
380
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
381
382
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
383

384
385
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
386
387
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
388

389
with_logic_decl:
390
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
391
392
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
393

394
(* Inductive declarations *)
395
396

inductive_decl:
397
| labels(lident_rich) params ind_defn
398
399
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
400

401
402
403
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
404

405
406
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
407

408
(* Type expressions *)
409

410
411
412
413
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
414

415
416
417
418
419
420
421
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
| quote_lident                      { PTtyvar ($1, false) }
| opaque_quote_lident               { PTtyvar ($1, true) }
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
422

423
424
cast:
| COLON ty  { $2 }
425

426
(* Parameters and binders *)
427

428
429
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
430
431
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
432
433
   names, whose type must be inferred. *)

434
params:  param*  { List.concat $1 }
435

436
binders: binder+ { List.concat $1 }
437
438
439

param:
| anon_binder
440
441
442
443
444
445
446
447
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
448
449
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
450
| LEFTPAR binder_vars_rest RIGHTPAR
451
    { match $2 with [l,_] -> error_param l
452
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
453
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
454
    { match $3 with [l,_] -> error_param l
455
456
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
457
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
458
| LEFTPAR GHOST binder_vars cast RIGHTPAR
459
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
460

461
462
binder:
| anon_binder
463
464
465
466
467
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
468
469
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
470
471
472
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
473
474
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
475
476
477
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
478
479
480
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
481
| LEFTPAR binder_vars_rest RIGHTPAR
482
    { match $2 with [l,i] -> [l, i, false, None]
483
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
484
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
485
    { match $3 with [l,i] -> [l, i, true, None]
486
487
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
488
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
489
| LEFTPAR GHOST binder_vars cast RIGHTPAR
490
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
491

492
493
494
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
495

496
binder_vars_rest:
497
498
499
500
501
502
503
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
504
   { List.rev_append $1 ($2 :: $3) }
505
| anon_binder binder_var*
506
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
507

508
binder_vars_head:
509
| ty {
510
511
    let of_id id = id.id_loc, Some id in
    let push acc = function
512
      | PTtyapp (Qident id, []) -> of_id id :: acc
513
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
514
    match $1 with
515
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
516
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
517

518
binder_var:
519
520
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
521
522

anon_binder:
523
524
| UNDERSCORE      { floc $startpos $endpos, None }

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
554
555
556
557
558
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
      | _ -> Tmatch ($4, [$2, $6]) }
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| quote_uident              { Tident (Qident $1) }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
601
602
603
604
605
606
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
607

608
609
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
610

611
612
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
613

614
615
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
616

617
618
619
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
620

621
622
623
624
625
626
627
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
Martin Clochard's avatar
Martin Clochard committed
628
629
| BY      { Tby }
| SO      { Tso }
630

631
632
633
634
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
| LAMBDA  { Tlambda }
635

636
637
638
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
639

640
(* Program declarations *)
641

642
pdecl:
643
| VAL top_ghost labels(lident_rich) type_v          { Dval ($3, $2, $4) }
644
| LET top_ghost labels(lident_rich) fun_defn        { Dfun ($3, $2, $4) }
645
| LET top_ghost labels(lident_rich) EQUAL fun_expr  { Dfun ($3, $2, $5) }
646
| LET REC with_list1(rec_defn)                      { Drec $3 }
647
648
| EXCEPTION labels(uident)                          { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                       { Dexn ($2, $3) }
649

650
651
652
653
654
655
top_ghost:
| (* epsilon *) { Gnone  }
| GHOST         { Gghost }
| LEMMA         { Glemma }

(* Function declarations *)
656
657

type_v:
658
| arrow_type_v  { $1 }
659
| cast          { PTpure $1 }
660
661

arrow_type_v:
662
| param params tail_type_c  { PTfunc ($1 @ $2, $3) }
663
664

tail_type_c:
665
666
| single_spec spec arrow_type_v { $3, spec_union $1 $2 }
| COLON simple_type_c           { $2 }
667
668

simple_type_c:
669
670
671
| ty spec { PTpure $1, $2 }

(* Function definitions *)
672

673
rec_defn:
674
| top_ghost labels(lident_rich) binders cast? spec EQUAL spec seq_expr
675
    { $2, $1, ($3, $4, $8, spec_union $5 $7) }
676

677
fun_defn:
678
| binders cast? spec EQUAL spec seq_expr { ($1, $2, $6, spec_union $3 $5) }
679

680
fun_expr:
681
682
| FUN binders spec ARROW spec seq_expr { ($2, None, $6, spec_union $3 $5) }

683
684
685
686
687
688
689
690
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
691

692
expr: e = mk_expr(expr_) { e }
693
694
695

expr_:
| expr_arg_
696
697
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
698
| NOT expr %prec prec_prefix_op
699
    { Enot $2 }
700
| prefix_op expr %prec prec_prefix_op
701
702
703
704
705
706
707
708
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = lazy_op ; r = expr
    { Elazy (l,o,r) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
709
| IF seq_expr THEN expr ELSE expr
710
    { Eif ($2, $4, $6) }
711
| IF seq_expr THEN expr %prec prec_no_else
712
713
714
715
716
717
718
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
719
| LET top_ghost pattern EQUAL seq_expr IN seq_expr
720
    { match $3.pat_desc with
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
      | Pvar id -> Elet (id, $2, $5, $7)
      | Pwild -> Elet (id_anonymous $3.pat_loc, $2, $5, $7)
      | Ptuple [] -> Elet (id_anonymous $3.pat_loc, $2,
          { $5 with expr_desc = Ecast ($5, PTtuple []) }, $7)
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $3.pat_loc in
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | _ ->
          let e = match $2 with
            | Glemma -> Loc.errorm ~loc:($3.pat_loc)
                "`let lemma' cannot be used with complex patterns"
            | Gghost -> { $5 with expr_desc = Eghost $5 }
            | Gnone -> $5 in
          Ematch (e, [$3, $7]) }
| LET top_ghost labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($3, $2, $5, $7) }
| LET top_ghost labels(lident) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
| LET top_ghost labels(lident_op_id) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
743
| LET REC with_list1(rec_defn) IN seq_expr
744
    { Erec ($3, $5) }
745
| fun_expr
746
747
748
749
750
751
752
    { Elam $1 }
| VAL top_ghost labels(lident_rich) mk_expr(val_expr) IN seq_expr
    { Elet ($3, $2, $4, $6) }
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
753
| quote_uident COLON seq_expr
754
    { Emark ($1, $3) }
755
| LOOP loop_annotation seq_expr END
756
    { Eloop ($2, $3) }
757
| WHILE seq_expr DO loop_annotation seq_expr DONE
758
759
760
    { Ewhile ($2, $4, $5) }
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
761
| ABSURD
762
    { Eabsurd }
763
| RAISE uqualid
764
    { Eraise ($2, None) }
765
| RAISE LEFTPAR uqualid seq_expr RIGHTPAR
766
767
768
    { Eraise ($3, Some $4) }
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
769
| ANY simple_type_c
770
    { Eany $2 }
771
| GHOST expr
772
    { Eghost $2 }
773
| ABSTRACT spec seq_expr END
774
775
776
    { Eabstract($3, $2) }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
777
| label expr %prec prec_named
778
779
780
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
781

782
783
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
784
785

expr_arg_:
786
787
788
789
790
791
792
793
794
795
796
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
797
798

expr_sub:
799
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
800
801
802
803
804
805
806
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
807
| expr_arg LEFTSQ expr RIGHTSQ
808
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
809
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
810
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
811
812
813
814
815
816
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
817

818
819
820
821
822
823
824
loop_annotation:
| (* epsilon *)
    { { loop_invariant = []; loop_variant = [] } }
| invariant loop_annotation
    { let a = $2 in { a with loop_invariant = $1 :: a.loop_invariant } }
| variant loop_annotation
    { let a = $2 in { a with loop_variant = variant_union $1 a.loop_variant } }
825

826
827
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
828

829
830
val_expr:
| tail_type_c { Eany $1 }
831

832
833
834
%inline lazy_op:
| AMPAMP  { LazyAnd }
| BARBAR  { LazyOr }
835
836

assertion_kind:
837
838
839
| ASSERT  { Aassert }
| ASSUME  { Aassume }
| CHECK   { Acheck }
840
841

for_direction:
842
843
| TO      { To }
| DOWNTO  { Downto }
844

845
(* Specification *)
846

847
spec:
848