diff --git a/study.org b/study.org index 37216dd0cd82de3e2a5c003d347a228ef84e3d6e..303ca42bcca997d8407963985a9e34ff6c3aec8c 100644 --- a/study.org +++ b/study.org @@ -435,14 +435,7 @@ specifies the compression level to use. #+NAME: benchmarks-csv #+begin_src csv :eval never :tangle benchmarks.csv -5000,high -5000,low -10000,high -10000,low -15000,high -15000,low -20000,high -20000,low + #+end_src We remind the reader that to rerun the benchmarks presented in the study, one @@ -655,7 +648,7 @@ with increasing size of the target linear system. #+NAME: get-ram-plot #+HEADER: :noweb yes :exports results :results silent #+begin_src R -<<code-ram>> + #+end_src #+CAPTION: RAM usage peaks of sequential runs of =minisolver= on linear systems @@ -676,34 +669,17 @@ is defined in this section. However, it is possible to run it in its entirety by evaluating Linsting [[get-ram-plot]]. #+begin_src R -library(svglite) -library(ggplot2) -data <- read.csv(file = "results.csv", header = FALSE) -colnames(data) <- c("size", "compression", "time", "ram", "epsilon") + #+end_src Except that here, the Y-axis represents the RAM usage in mibibytes (MiB). #+begin_src R -plot <- ggplot( - data = data, - mapping = aes(x = size, y = ram, color = compression) -) + -geom_line() + -geom_point(size = 2.5) + -scale_x_continuous(name = "# Unknowns (N)") + -scale_y_continuous(name = "RAM usage peaks [MiB]") + -labs(color = "Compression level") + -scale_color_manual( - values = c("high" = "#F07E26", "low" = "#9B004F") -) + -theme_bw() -#+end_src The destination file name changes too, of course. #+begin_src R -ggsave(file = "figures/results-ram.pdf", plot = plot, width = 5, height = 3) + #+end_src * Conclusion