diff --git a/README.md b/README.md index 0ec9ef4a6f6fc8a35918c8bc5bd3bc26dc59d53c..fd380d273dcee06ebf0765d355d89eab2749ef98 100644 --- a/README.md +++ b/README.md @@ -8,8 +8,9 @@ C. Farabet, C. Couprie, L. Najman, and Y. Lecun, “Learning hierarchical featur * scipy * sklearn * skimage -* tensorflow (r1.0) -* sacred +* tensorflow==1.0 +* sacred==v0.7b2 +* pycoco (if using MS COCO database, https://github.com/pdollar/coco/tree/master/PythonAPI) If using GPU: * GPU enabled tensorflow @@ -18,12 +19,12 @@ If using GPU: * cuDNN # How to use -To run with synthetic squares dataset do: -> python3 main.py -To run with real scene data (Stanford backgournd dataset) do: -> python3 main.py with dataset_name='stanford' -To run using invariant-based kernels: -> python3 main.py with invariants=True + +> `python3 experiment.py with mode=[test,train,evaluate,train_and_eval]` + +To see available params do: + +> `python3 experiment.py print_config` About the dataset: "The Stanford back- ground dataset [15] contains 715 images of outdoor scenes