diff --git a/heterogeneous_data/multivariate_models_v1_7.ipynb b/heterogeneous_data/multivariate_models_v1_7.ipynb index 4f19b0070e3b868c54b43bdf6f2f82267cdf9f0a..f90ab02b012c1a31eb9f8f38d150b67089739116 100644 --- a/heterogeneous_data/multivariate_models_v1_7.ipynb +++ b/heterogeneous_data/multivariate_models_v1_7.ipynb @@ -1663,19 +1663,19 @@ "\n", "Can you find the reason why we use $\\log$ values to parametrize the variance (W_logvar)? \n", "\n", - "<img src=\"img/vae.svg\" />\n", + "<img src=\"https://gitlab.inria.fr/epione/flhd/-/raw/master/heterogeneous_data/img/vae.svg\" alt=\"img/vae.svg\">\n", "\n", "## Sparse VAE\n", "To favour sparsity in the latent space we parametrize the variance of the latent distribution with log_alpha (times $\\mu^2)$.\n", "\n", - "<img src=\"img/sparse_vae.svg\" />\n", + "<img src=\"https://gitlab.inria.fr/epione/flhd/-/raw/master/heterogeneous_data/img/sparse_vae.svg\" alt=\"img/sparse_vae.svg\">\n", "\n", "## MCVAE\n", "The MultiChannel VAE is built by stacking multiple VAEs and allowing the decoding distributions to be computed from every input channel.\n", "\n", "Excercise: sketch the Sparse MCVAE. How many (log) alpha parameters do we need?\n", "\n", - "<img src=\"img/mcvae.svg\" />\n" + "<img src=\"https://gitlab.inria.fr/epione/flhd/-/raw/master/heterogeneous_data/img/mcvae.svg\" alt=\"img/mcvae.svg\">\n" ] }, {