From 68c000917c6e853dc7e25495dd427bdf0e4eb64f Mon Sep 17 00:00:00 2001 From: LORENZI Marco <marco.lorenzi@inria.fr> Date: Fri, 8 Jan 2021 14:21:31 +0100 Subject: [PATCH] Update introduction.md --- federated_learning/introduction.md | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/federated_learning/introduction.md b/federated_learning/introduction.md index fd506c7..6094f77 100644 --- a/federated_learning/introduction.md +++ b/federated_learning/introduction.md @@ -1,3 +1,11 @@ +## Links + +[Presentation material](https://ecaad164-c957-4008-a451-5e1098ff8953.filesusr.com/ugd/68a50d_a3d074241b3a4342be2fef2413ee61c7.pdf) +[Colab notebook - part 1](https://colab.research.google.com/drive/1_uemRwNuok1wop6wP2Aiokn0KQgcwfr1?usp=sharing) +[Colab notebook - part 2](https://colab.research.google.com/drive/1PiUee4n8T7pIhDV5zDEqhsK5jXvDYHpO?usp=sharing) +[Colab notebook - part 3](https://colab.research.google.com/drive/1kIbrUtNH_WIPQX5vLyzRjs5CTgKA2CMT?usp=sharing) +[Colab notebook - part 4](https://colab.research.google.com/drive/10wEN9eqdE9Z7CtvhRFgsL3gAzunZGlee?usp=sharing) + # Introduction Standard machine learning approaches require to have a centralizaed dataset in order to train a model. In certain scenarios like in the biomedical field, this is not straightforward due to several reasons like: @@ -56,6 +64,5 @@ The main challenges in FL are associated to: 3. **Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020).** *Federated learning: Challenges, methods, and future directions*. IEEE Signal Processing Magazine, 37(3), 50-60. -## Link -[Presentation material](https://ecaad164-c957-4008-a451-5e1098ff8953.filesusr.com/ugd/68a50d_a3d074241b3a4342be2fef2413ee61c7.pdf) + -- GitLab