/** * * @file codelet_zgetrf_nopiv.c * * @copyright 2009-2014 The University of Tennessee and The University of * Tennessee Research Foundation. All rights reserved. * @copyright 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** * * MORSE codelets kernel * MORSE is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 1.0.0 * @author Omar Zenati * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2013-02-01 * @precisions normal z -> c d s * **/ #include "chameleon_quark.h" #include "chameleon/morse_tasks_z.h" #include "coreblas/coreblas_z.h" void CORE_zgetrf_nopiv_quark(Quark *quark) { int m; int n; int ib; MORSE_Complex64_t *A; int lda; MORSE_sequence_t *sequence; MORSE_request_t *request; int iinfo; int info; quark_unpack_args_8(quark, m, n, ib, A, lda, sequence, request, iinfo); CORE_zgetrf_nopiv(m, n, ib, A, lda, &info); if ( info != MORSE_SUCCESS ) { RUNTIME_sequence_flush( (MORSE_context_t*)quark, sequence, request, iinfo+info ); } } /***************************************************************************//** * * @ingroup CORE_MORSE_Complex64_t * * CORE_zgetrf_nopiv computes an LU factorization of a general diagonal * dominant M-by-N matrix A witout pivoting. * * The factorization has the form * A = L * U * where L is lower triangular with unit * diagonal elements (lower trapezoidal if m > n), and U is upper * triangular (upper trapezoidal if m < n). * * This is the right-looking Level 3 BLAS version of the algorithm. * WARNING: Your matrix need to be diagonal dominant if you want to call this * routine safely. * ******************************************************************************* * * @param[in] M * The number of rows of the matrix A. M >= 0. * * @param[in] N * The number of columns of the matrix A. N >= 0. * * @param[in] IB * The block size to switch between blocked and unblocked code. * * @param[in,out] A * On entry, the M-by-N matrix to be factored. * On exit, the factors L and U from the factorization * A = P*L*U; the unit diagonal elements of L are not stored. * * @param[in] LDA * The leading dimension of the array A. LDA >= max(1,M). * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if INFO = -k, the k-th argument had an illegal value * \retval >0 if INFO = k, U(k,k) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, and division by zero will occur if it is used * to solve a system of equations. * ******************************************************************************/ void MORSE_TASK_zgetrf_nopiv(const MORSE_option_t *options, int m, int n, int ib, int nb, const MORSE_desc_t *A, int Am, int An, int lda, int iinfo) { quark_option_t *opt = (quark_option_t*)(options->schedopt); DAG_CORE_GETRF; QUARK_Insert_Task( opt->quark, CORE_zgetrf_nopiv_quark, (Quark_Task_Flags*)opt, sizeof(int), &m, VALUE, sizeof(int), &n, VALUE, sizeof(int), &ib, VALUE, sizeof(MORSE_Complex64_t)*nb*nb, RTBLKADDR(A, MORSE_Complex64_t, Am, An), INOUT, sizeof(int), &lda, VALUE, sizeof(MORSE_sequence_t*), &(options->sequence), VALUE, sizeof(MORSE_request_t*), &(options->request), VALUE, sizeof(int), &iinfo, VALUE, 0); }