/** * * @copyright (c) 2009-2014 The University of Tennessee and The University * of Tennessee Research Foundation. * All rights reserved. * @copyright (c) 2012-2014 Inria. All rights reserved. * @copyright (c) 2012-2014 IPB. All rights reserved. * **/ /** * * @file codelet_zttlqt.c * * MORSE codelets kernel * MORSE is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.5.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for MORSE 1.0.0 * @author Hatem Ltaief * @author Dulceneia Becker * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2010-11-15 * @precisions normal z -> c d s * **/ #include <lapacke.h> #include "morse_quark.h" #undef REAL #define COMPLEX /***************************************************************************//** * * @ingroup CORE_MORSE_Complex64_t * * CORE_zttlqt computes a LQ factorization of a rectangular matrix * formed by coupling side-by-side a complex M-by-M lower triangular tile A1 * and a complex M-by-N lower triangular tile A2: * * | A1 A2 | = L * Q * * The tile Q is represented as a product of elementary reflectors * * Q = H(k)' . . . H(2)' H(1)', where k = min(M,N). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in * A2(i,1:n), and tau in TAU(i). * ******************************************************************************* * * @param[in] M * The number of rows of the tile A1 and A2. M >= 0. * The number of columns of the tile A1. * * @param[in] N * The number of columns of the tile A2. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A1 * On entry, the M-by-M tile A1. * On exit, the elements on and below the diagonal of the array * contain the M-by-M lower trapezoidal tile L; * the elements above the diagonal are not referenced. * * @param[in] LDA1 * The leading dimension of the array A1. LDA1 >= max(1,N). * * @param[in,out] A2 * On entry, the M-by-N lower triangular tile A2. * On exit, the elements on and below the diagonal of the array * with the array TAU, represent * the unitary tile Q as a product of elementary reflectors * (see Further Details). * * @param[in] LDA2 * The leading dimension of the array A2. LDA2 >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[in,out] WORK * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * ******************************************************************************/ void MORSE_TASK_zttlqt(MORSE_option_t *options, int m, int n, int ib, int nb, MORSE_desc_t *A1, int A1m, int A1n, int lda1, MORSE_desc_t *A2, int A2m, int A2n, int lda2, MORSE_desc_t *T, int Tm, int Tn, int ldt) { quark_option_t *opt = (quark_option_t*)(options->schedopt); DAG_CORE_TTLQT; QUARK_Insert_Task(opt->quark, CORE_zttlqt_quark, (Quark_Task_Flags*)opt, sizeof(int), &m, VALUE, sizeof(int), &n, VALUE, sizeof(int), &ib, VALUE, sizeof(MORSE_Complex64_t)*nb*nb, RTBLKADDR(A1, MORSE_Complex64_t, A1m, A1n), INOUT/**/, sizeof(int), &lda1, VALUE, sizeof(MORSE_Complex64_t)*nb*nb, RTBLKADDR(A2, MORSE_Complex64_t, A2m, A2n), INOUT/**/|LOCALITY, sizeof(int), &lda2, VALUE, sizeof(MORSE_Complex64_t)*ib*nb, RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn), OUTPUT, sizeof(int), &ldt, VALUE, sizeof(MORSE_Complex64_t)*nb, NULL, SCRATCH, sizeof(MORSE_Complex64_t)*ib*nb, NULL, SCRATCH, 0); } void CORE_zttlqt_quark(Quark *quark) { int m; int n; int ib; MORSE_Complex64_t *A1; int lda1; MORSE_Complex64_t *A2; int lda2; MORSE_Complex64_t *T; int ldt; MORSE_Complex64_t *TAU; MORSE_Complex64_t *WORK; quark_unpack_args_11(quark, m, n, ib, A1, lda1, A2, lda2, T, ldt, TAU, WORK); CORE_zttlqt(m, n, ib, A1, lda1, A2, lda2, T, ldt, TAU, WORK); }