/** * * @file codelet_zgeqrt.c * * @copyright 2009-2015 The University of Tennessee and The University of * Tennessee Research Foundation. All rights reserved. * @copyright 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** * * @brief Chameleon zgeqrt PaRSEC codelet * * @version 1.0.0 * @author Reazul Hoque * @precisions normal z -> c d s * */ #include "chameleon_parsec.h" #include "chameleon/morse_tasks_z.h" #include "coreblas/coreblas_z.h" /** * * @ingroup CORE_MORSE_Complex64_t * * CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A: * A = Q * R. * * The tile Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(M,N). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), * and tau in TAU(i). * ******************************************************************************* * * @param[in] M * The number of rows of the tile A. M >= 0. * * @param[in] N * The number of columns of the tile A. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A * On entry, the M-by-N tile A. * On exit, the elements on and above the diagonal of the array * contain the min(M,N)-by-N upper trapezoidal tile R (R is * upper triangular if M >= N); the elements below the diagonal, * with the array TAU, represent the unitary tile Q as a * product of elementary reflectors (see Further Details). * * @param[in] LDA * The leading dimension of the array A. LDA >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[out] WORK * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * */ static inline int CORE_zgeqrt_parsec ( parsec_execution_stream_t *context, parsec_task_t *this_task ) { int m; int n; int ib; MORSE_Complex64_t *A; int lda; MORSE_Complex64_t *T; int ldt; MORSE_Complex64_t *TAU; MORSE_Complex64_t *WORK; parsec_dtd_unpack_args( this_task, &m, &n, &ib, &A, &lda, &T, &ldt, &TAU, &WORK ); CORE_zgeqrt( m, n, ib, A, lda, T, ldt, TAU, WORK ); (void)context; return PARSEC_HOOK_RETURN_DONE; } void MORSE_TASK_zgeqrt(const MORSE_option_t *options, int m, int n, int ib, int nb, const MORSE_desc_t *A, int Am, int An, int lda, const MORSE_desc_t *T, int Tm, int Tn, int ldt) { parsec_taskpool_t* PARSEC_dtd_taskpool = (parsec_taskpool_t *)(options->sequence->schedopt); parsec_dtd_taskpool_insert_task( PARSEC_dtd_taskpool, CORE_zgeqrt_parsec, options->priority, "geqrt", sizeof(int), &m, VALUE, sizeof(int), &n, VALUE, sizeof(int), &ib, VALUE, PASSED_BY_REF, RTBLKADDR( A, MORSE_Complex64_t, Am, An ), INOUT | AFFINITY, sizeof(int), &lda, VALUE, PASSED_BY_REF, RTBLKADDR( T, MORSE_Complex64_t, Tm, Tn ), OUTPUT, sizeof(int), &ldt, VALUE, sizeof(MORSE_Complex64_t)*nb, NULL, SCRATCH, sizeof(MORSE_Complex64_t)*ib*nb, NULL, SCRATCH, PARSEC_DTD_ARG_END ); }