/** * * @copyright (c) 2009-2014 The University of Tennessee and The University * of Tennessee Research Foundation. * All rights reserved. * @copyright (c) 2012-2016 Inria. All rights reserved. * @copyright (c) 2012-2014, 2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved. * **/ /** * * @file codelet_ztsqrt.c * * MORSE codelets kernel * MORSE is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.5.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for MORSE 1.0.0 * @author Hatem Ltaief * @author Jakub Kurzak * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2010-11-15 * @precisions normal z -> c d s * **/ #include "runtime/starpu/include/morse_starpu.h" #include "runtime/starpu/include/runtime_codelet_z.h" #undef REAL #define COMPLEX /** * * @ingroup CORE_MORSE_Complex64_t * * CORE_ztsqrt computes a QR factorization of a rectangular matrix * formed by coupling a complex N-by-N upper triangular tile A1 * on top of a complex M-by-N tile A2: * * | A1 | = Q * R * | A2 | * ******************************************************************************* * * @param[in] M * The number of columns of the tile A2. M >= 0. * * @param[in] N * The number of rows of the tile A1. * The number of columns of the tiles A1 and A2. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A1 * On entry, the N-by-N tile A1. * On exit, the elements on and above the diagonal of the array * contain the N-by-N upper trapezoidal tile R; * the elements below the diagonal are not referenced. * * @param[in] LDA1 * The leading dimension of the array A1. LDA1 >= max(1,N). * * @param[in,out] A2 * On entry, the M-by-N tile A2. * On exit, all the elements with the array TAU, represent * the unitary tile Q as a product of elementary reflectors * (see Further Details). * * @param[in] LDA2 * The leading dimension of the tile A2. LDA2 >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[out] WORK * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * ******************************************************************************/ void MORSE_TASK_ztsqrt(const MORSE_option_t *options, int m, int n, int ib, int nb, const MORSE_desc_t *A1, int A1m, int A1n, int lda1, const MORSE_desc_t *A2, int A2m, int A2n, int lda2, const MORSE_desc_t *T, int Tm, int Tn, int ldt) { (void)nb; struct starpu_codelet *codelet = &cl_ztsqrt; void (*callback)(void*) = options->profiling ? cl_ztsqrt_callback : NULL; MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host); MORSE_BEGIN_ACCESS_DECLARATION; MORSE_ACCESS_RW(A1, A1m, A1n); MORSE_ACCESS_RW(A2, A2m, A2n); MORSE_ACCESS_W(T, Tm, Tn); MORSE_RANK_CHANGED(A2->get_rankof(A2, A2m, A2n)); MORSE_END_ACCESS_DECLARATION; starpu_insert_task( starpu_mpi_codelet(codelet), STARPU_VALUE, &m, sizeof(int), STARPU_VALUE, &n, sizeof(int), STARPU_VALUE, &ib, sizeof(int), STARPU_RW, RTBLKADDR(A1, MORSE_Complex64_t, A1m, A1n), STARPU_VALUE, &lda1, sizeof(int), STARPU_RW, RTBLKADDR(A2, MORSE_Complex64_t, A2m, A2n), STARPU_VALUE, &lda2, sizeof(int), STARPU_W, RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn ), STARPU_VALUE, &ldt, sizeof(int), /* max( nb * (ib+1), ib * (ib+nb) ) */ STARPU_SCRATCH, options->ws_worker, /* 2 * ib * (nb+ib) + nb */ STARPU_VALUE, &h_work, sizeof(MORSE_starpu_ws_t *), STARPU_PRIORITY, options->priority, STARPU_CALLBACK, callback, #if defined(CHAMELEON_CODELETS_HAVE_NAME) STARPU_NAME, "ztsqrt", #endif STARPU_EXECUTE_ON_NODE, A2->get_rankof(A2, A2m, A2n), 0); } #if !defined(CHAMELEON_SIMULATION) static void cl_ztsqrt_cpu_func(void *descr[], void *cl_arg) { MORSE_starpu_ws_t *h_work; int m; int n; int ib; MORSE_Complex64_t *A1; int lda1; MORSE_Complex64_t *A2; int lda2; MORSE_Complex64_t *T; int ldt; MORSE_Complex64_t *TAU, *WORK; A1 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]); A2 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]); T = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]); TAU= (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[3]); /* nb + ib*nb */ starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda1, &lda2, &ldt, &h_work); WORK = TAU + chameleon_max( m, n ); CORE_ztsqrt(m, n, ib, A1, lda1, A2, lda2, T, ldt, TAU, WORK); } #if defined(CHAMELEON_USE_MAGMA) static void cl_ztsqrt_cuda_func(void *descr[], void *cl_arg) { MORSE_starpu_ws_t *h_work; int m; int n; int ib; cuDoubleComplex *h_A2, *h_T, *h_D, *h_TAU, *h_W; cuDoubleComplex *d_A1, *d_A2, *d_T, *d_D, *d_W; int lda1, lda2, ldt; CUstream stream; starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda1, &lda2, &ldt, &h_work); /* Gather pointer to data on device */ d_A1 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]); d_A2 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]); d_T = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]); d_W = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[3]); /* 2*ib*n + ib*ib */ d_D = d_W + 2*ib*n; /* scratch data on host */ /* m*ib + ib*ib + max(m,n) + ib*n + ib*ib */ h_A2 = (cuDoubleComplex*)RUNTIME_starpu_ws_getlocal(h_work); h_T = h_A2 + m*ib; h_TAU = h_T + ib*ib; h_W = h_TAU + chameleon_max(m,n); h_D = h_W + ib*n; stream = starpu_cuda_get_local_stream(); CUDA_ztsqrt( m, n, ib, d_A1, lda1, d_A2, lda2, h_A2, lda2, d_T, ldt, h_T, ib, d_D, h_D, ib, h_TAU, h_W, d_W, stream); cudaThreadSynchronize(); } #endif #endif /* !defined(CHAMELEON_SIMULATION) */ /* * Codelet definition */ #if defined(CHAMELEON_USE_MAGMA) CODELETS(ztsqrt, 4, cl_ztsqrt_cpu_func, cl_ztsqrt_cuda_func, 0) #else CODELETS_CPU(ztsqrt, 4, cl_ztsqrt_cpu_func) #endif