/** * * @copyright (c) 2009-2014 The University of Tennessee and The University * of Tennessee Research Foundation. * All rights reserved. * @copyright (c) 2012-2016 Inria. All rights reserved. * @copyright (c) 2012-2014, 2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved. * **/ /** * * @file codelet_ztslqt.c * * MORSE codelets kernel * MORSE is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.5.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for MORSE 1.0.0 * @author Hatem Ltaief * @author Jakub Kurzak * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2010-11-15 * @precisions normal z -> c d s * **/ #include "runtime/starpu/include/morse_starpu.h" #include "runtime/starpu/include/runtime_codelet_z.h" #undef REAL #define COMPLEX /** * * @ingroup CORE_MORSE_Complex64_t * * CORE_ztslqt computes a LQ factorization of a rectangular matrix * formed by coupling side-by-side a complex M-by-M * lower triangular tile A1 and a complex M-by-N tile A2: * * | A1 A2 | = L * Q * * The tile Q is represented as a product of elementary reflectors * * Q = H(k)' . . . H(2)' H(1)', where k = min(M,N). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in * A2(i,1:n), and tau in TAU(i). * ******************************************************************************* * * @param[in] M * The number of rows of the tile A1 and A2. M >= 0. * The number of columns of the tile A1. * * @param[in] N * The number of columns of the tile A2. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A1 * On entry, the M-by-M tile A1. * On exit, the elements on and below the diagonal of the array * contain the M-by-M lower trapezoidal tile L; * the elements above the diagonal are not referenced. * * @param[in] LDA1 * The leading dimension of the array A1. LDA1 >= max(1,M). * * @param[in,out] A2 * On entry, the M-by-N tile A2. * On exit, all the elements with the array TAU, represent * the unitary tile Q as a product of elementary reflectors * (see Further Details). * * @param[in] LDA2 * The leading dimension of the tile A2. LDA2 >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[out] WORK * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * ******************************************************************************/ void MORSE_TASK_ztslqt(const MORSE_option_t *options, int m, int n, int ib, int nb, const MORSE_desc_t *A1, int A1m, int A1n, int lda1, const MORSE_desc_t *A2, int A2m, int A2n, int lda2, const MORSE_desc_t *T, int Tm, int Tn, int ldt) { (void)nb; struct starpu_codelet *codelet = &cl_ztslqt; void (*callback)(void*) = options->profiling ? cl_ztslqt_callback : NULL; MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host); MORSE_BEGIN_ACCESS_DECLARATION; MORSE_ACCESS_RW(A1, A1m, A1n); MORSE_ACCESS_RW(A2, A2m, A2n); MORSE_ACCESS_W(T, Tm, Tn); MORSE_END_ACCESS_DECLARATION; starpu_insert_task( starpu_mpi_codelet(codelet), STARPU_VALUE, &m, sizeof(int), STARPU_VALUE, &n, sizeof(int), STARPU_VALUE, &ib, sizeof(int), STARPU_RW, RTBLKADDR(A1, MORSE_Complex64_t, A1m, A1n), STARPU_VALUE, &lda1, sizeof(int), STARPU_RW, RTBLKADDR(A2, MORSE_Complex64_t, A2m, A2n), STARPU_VALUE, &lda2, sizeof(int), STARPU_W, RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn), STARPU_VALUE, &ldt, sizeof(int), /* max( nb * (ib+1), ib * (ib+nb) ) */ STARPU_SCRATCH, options->ws_worker, /* /\* 2 * ib * (nb+ib) + nb *\/ */ STARPU_VALUE, &h_work, sizeof(MORSE_starpu_ws_t *), STARPU_PRIORITY, options->priority, STARPU_CALLBACK, callback, #if defined(CHAMELEON_CODELETS_HAVE_NAME) STARPU_NAME, "ztslqt", #endif 0); } #if !defined(CHAMELEON_SIMULATION) static void cl_ztslqt_cpu_func(void *descr[], void *cl_arg) { MORSE_starpu_ws_t *h_work; int m; int n; int ib; MORSE_Complex64_t *A1; int lda1; MORSE_Complex64_t *A2; int lda2; MORSE_Complex64_t *T; int ldt; MORSE_Complex64_t *TAU, *WORK; A1 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]); A2 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]); T = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]); TAU= (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[3]); /* nb + ib*nb */ starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda1, &lda2, &ldt, &h_work); WORK = TAU + chameleon_max( m, n ); CORE_ztslqt(m, n, ib, A1, lda1, A2, lda2, T, ldt, TAU, WORK); } #endif /* !defined(CHAMELEON_SIMULATION) */ /* * Codelet definition */ CODELETS_CPU(ztslqt, 4, cl_ztslqt_cpu_func)