diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dgemm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dgemm.sirocco
index 71459a7ff9fdac8958813af76131ba2ed214e450..213bfaf1c4350ce2311ec43e2206634de49a3d3e 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/dgemm.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dgemm.sirocco
@@ -7,12 +7,12 @@
 # number of combinations
 5
 ####################
-# COMB_4
+# COMB_2
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 0
 ####################
 # DEV_0
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb4)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,11 +36,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-744ff412	22118400       	0.000000e+00   	7.614739e+04   	1.570335e+04   	4.926736e+07   	3.911128e+12   	647
-b63efa5a	153600         	0.000000e+00   	5.080183e+01   	9.743801e+00   	2.861616e+06   	1.507233e+08   	56329
-9427311d	4646400        	0.000000e+00   	8.137654e+03   	1.863872e+03   	1.657640e+07   	1.419696e+11   	2037
-dc7b85e2	49766400       	0.000000e+00   	2.267816e+05   	3.915016e+04   	1.598810e+08   	3.733864e+13   	705
 f74a4f19	88473600       	0.000000e+00   	4.662963e+05   	5.310256e+04   	3.273400e+08   	1.546170e+14   	702
+dc7b85e2	49766400       	0.000000e+00   	2.267816e+05   	3.915016e+04   	1.598810e+08   	3.733864e+13   	705
+9427311d	4646400        	0.000000e+00   	8.137654e+03   	1.863872e+03   	1.657640e+07   	1.419696e+11   	2037
+b63efa5a	153600         	0.000000e+00   	5.080183e+01   	9.743801e+00   	2.861616e+06   	1.507233e+08   	56329
+744ff412	22118400       	0.000000e+00   	9.214389e+04   	2.022196e+04   	1.782984e+08   	1.722038e+13   	1935
 
 ####################
 # COMB_1
@@ -48,7 +48,7 @@ f74a4f19	88473600       	0.000000e+00   	4.662963e+05   	5.310256e+04   	3.27340
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -72,19 +72,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-744ff412	22118400       	0.000000e+00   	1.715310e+03   	9.993558e+01   	9.566285e+06   	1.646484e+10   	5577
-b63efa5a	153600         	0.000000e+00   	5.113274e+01   	1.134809e+01   	1.518642e+04   	8.147708e+05   	297
-9427311d	4646400        	0.000000e+00   	2.017727e+02   	2.861061e+01   	1.652922e+06   	3.402201e+08   	8192
-dc7b85e2	49766400       	0.000000e+00   	6.191028e+03   	2.666186e+02   	2.317302e+07   	1.437309e+11   	3743
 f74a4f19	88473600       	0.000000e+00   	1.292684e+04   	4.908603e+02   	4.657542e+07   	6.029413e+11   	3603
+dc7b85e2	49766400       	0.000000e+00   	6.191028e+03   	2.666186e+02   	2.317302e+07   	1.437309e+11   	3743
+9427311d	4646400        	0.000000e+00   	2.017727e+02   	2.861061e+01   	1.652922e+06   	3.402201e+08   	8192
+b63efa5a	153600         	0.000000e+00   	5.113274e+01   	1.134809e+01   	1.518642e+04   	8.147708e+05   	297
+744ff412	22118400       	0.000000e+00   	1.678769e+03   	1.038248e+02   	6.356153e+07   	1.071132e+11   	37862
 
 ####################
-# COMB_2
+# COMB_0
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -98,7 +98,7 @@ f74a4f19	88473600       	0.000000e+00   	1.292684e+04   	4.908603e+02   	4.65754
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb2)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -108,19 +108,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-744ff412	22118400       	0.000000e+00   	1.694044e+03   	9.446026e+01   	9.451069e+06   	1.606030e+10   	5579
-b63efa5a	153600         	0.000000e+00   	6.271543e+01   	1.282513e+01   	1.994351e+04   	1.303072e+06   	318
-9427311d	4646400        	0.000000e+00   	2.001219e+02   	2.795923e+01   	1.640199e+06   	3.346467e+08   	8196
-dc7b85e2	49766400       	0.000000e+00   	6.117615e+03   	2.941760e+02   	2.339376e+07   	1.434449e+11   	3824
 f74a4f19	88473600       	0.000000e+00   	1.279991e+04   	4.666369e+02   	4.609249e+07   	5.907639e+11   	3601
+dc7b85e2	49766400       	0.000000e+00   	6.117615e+03   	2.941760e+02   	2.339376e+07   	1.434449e+11   	3824
+9427311d	4646400        	0.000000e+00   	2.001219e+02   	2.795923e+01   	1.640199e+06   	3.346467e+08   	8196
+b63efa5a	153600         	0.000000e+00   	6.271543e+01   	1.282513e+01   	1.994351e+04   	1.303072e+06   	318
+744ff412	22118400       	0.000000e+00   	1.697238e+03   	1.032817e+02   	6.385010e+07   	1.087701e+11   	37620
 
 ####################
-# COMB_0
+# COMB_3
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -134,7 +134,7 @@ f74a4f19	88473600       	0.000000e+00   	1.279991e+04   	4.666369e+02   	4.60924
 # number of implementations
 1
 #####
-# Model for cuda2_impl0 (Comb0)
+# Model for cuda2_impl0 (Comb3)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -144,19 +144,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-744ff412	22118400       	0.000000e+00   	1.713334e+03   	9.294880e+01   	9.365083e+06   	1.609274e+10   	5466
-b63efa5a	153600         	0.000000e+00   	4.994209e+01   	9.498420e+00   	1.588158e+04   	8.218495e+05   	318
-9427311d	4646400        	0.000000e+00   	2.026661e+02   	2.758349e+01   	1.561340e+06   	3.222922e+08   	7704
-dc7b85e2	49766400       	0.000000e+00   	6.177427e+03   	2.260170e+02   	2.327037e+07   	1.439434e+11   	3767
 f74a4f19	88473600       	0.000000e+00   	1.286952e+04   	4.739314e+02   	4.932886e+07   	6.356995e+11   	3833
+dc7b85e2	49766400       	0.000000e+00   	6.177427e+03   	2.260170e+02   	2.327037e+07   	1.439434e+11   	3767
+9427311d	4646400        	0.000000e+00   	2.026661e+02   	2.758349e+01   	1.561340e+06   	3.222922e+08   	7704
+b63efa5a	153600         	0.000000e+00   	4.994209e+01   	9.498420e+00   	1.588158e+04   	8.218495e+05   	318
+744ff412	22118400       	0.000000e+00   	1.713334e+03   	9.294880e+01   	9.365083e+06   	1.609274e+10   	5466
 
 ####################
-# COMB_3
+# COMB_4
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -170,7 +170,7 @@ f74a4f19	88473600       	0.000000e+00   	1.286952e+04   	4.739314e+02   	4.93288
 # number of implementations
 1
 #####
-# Model for cuda3_impl0 (Comb3)
+# Model for cuda3_impl0 (Comb4)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -180,9 +180,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-744ff412	22118400       	0.000000e+00   	1.680328e+03   	1.055142e+02   	9.028404e+06   	1.523050e+10   	5373
-b63efa5a	153600         	0.000000e+00   	5.000193e+01   	1.025088e+01   	7.350283e+03   	3.829751e+05   	147
-9427311d	4646400        	0.000000e+00   	1.988673e+02   	2.685130e+01   	1.504233e+06   	3.045963e+08   	7564
-dc7b85e2	49766400       	0.000000e+00   	6.051978e+03   	2.759693e+02   	2.305804e+07   	1.398369e+11   	3810
 f74a4f19	88473600       	0.000000e+00   	1.258002e+04   	4.620060e+02   	4.874757e+07   	6.140725e+11   	3875
+dc7b85e2	49766400       	0.000000e+00   	6.051978e+03   	2.759693e+02   	2.305804e+07   	1.398369e+11   	3810
+9427311d	4646400        	0.000000e+00   	1.988673e+02   	2.685130e+01   	1.504233e+06   	3.045963e+08   	7564
+b63efa5a	153600         	0.000000e+00   	5.000193e+01   	1.025088e+01   	7.350283e+03   	3.829751e+05   	147
+744ff412	22118400       	0.000000e+00   	1.680328e+03   	1.055142e+02   	9.028404e+06   	1.523050e+10   	5373
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dlauum.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dlauum.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..732dbabb74cab36d2231eeb1b8c849a583538e76
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dlauum.sirocco
@@ -0,0 +1,40 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+1
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+901ddf46	7372800        	0.000000e+00   	1.649855e+04   	3.052838e+03   	3.877159e+06   	6.615766e+10   	235
+
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dplgsy.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dplgsy.sirocco
index e63e5c40cda42ba61ad702603be4fe23cd8a1fa1..0ba64725206b6de086b7024075292c5ca8f18ada 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/dplgsy.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dplgsy.sirocco
@@ -7,12 +7,12 @@
 # number of combinations
 1
 ####################
-# COMB_4
+# COMB_2
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 0
 ####################
 # DEV_0
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb4)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,9 +36,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-901ddf46	7372800        	0.000000e+00   	9.359014e+03   	4.860060e+02   	2.358472e+06   	2.213249e+10   	252
-5c532f3b	51200          	0.000000e+00   	9.876737e+01   	1.343538e+01   	1.590451e+06   	1.599914e+08   	16103
-69439308	1548800        	0.000000e+00   	2.134161e+03   	1.815312e+02   	4.673812e+06   	1.004683e+10   	2190
-d48836c9	16588800       	0.000000e+00   	2.092160e+04   	1.229935e+03   	3.661280e+06   	7.686456e+10   	175
 a0677317	29491200       	0.000000e+00   	3.676615e+04   	1.578675e+03   	5.110494e+06   	1.882396e+11   	139
+d48836c9	16588800       	0.000000e+00   	2.092160e+04   	1.229935e+03   	3.661280e+06   	7.686456e+10   	175
+69439308	1548800        	0.000000e+00   	2.134161e+03   	1.815312e+02   	4.673812e+06   	1.004683e+10   	2190
+5c532f3b	51200          	0.000000e+00   	9.876737e+01   	1.343538e+01   	1.590451e+06   	1.599914e+08   	16103
+901ddf46	7372800        	0.000000e+00   	1.139975e+04   	2.282146e+03   	2.380267e+07   	2.822191e+11   	2088
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dpotrf.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dpotrf.sirocco
index d84aa49cd289ce74ec56b29c64beca314131a16b..bf7a4c0551abe35e3572459576181341ff33c8a7 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/dpotrf.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dpotrf.sirocco
@@ -7,12 +7,12 @@
 # number of combinations
 5
 ####################
-# COMB_1
+# COMB_0
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb1)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,19 +36,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-d48836c9	16588800       	0.000000e+00   	1.927652e+04   	3.502107e+03   	9.059964e+05   	1.804090e+10   	47
-901ddf46	7372800        	0.000000e+00   	1.229853e+04   	1.768810e+03   	6.149267e+05   	7.719131e+09   	50
-5c532f3b	51200          	0.000000e+00   	2.101636e+03   	2.756395e+02   	1.303014e+05   	2.785568e+08   	62
-69439308	1548800        	0.000000e+00   	4.903930e+03   	3.193701e+02   	2.550044e+05   	1.255828e+09   	52
 a0677317	29491200       	0.000000e+00   	2.463348e+04   	2.985247e+03   	1.576542e+06   	3.940607e+10   	64
+69439308	1548800        	0.000000e+00   	4.903930e+03   	3.193701e+02   	2.550044e+05   	1.255828e+09   	52
+5c532f3b	51200          	0.000000e+00   	2.101636e+03   	2.756395e+02   	1.303014e+05   	2.785568e+08   	62
+901ddf46	7372800        	0.000000e+00   	1.229853e+04   	1.768810e+03   	6.149267e+05   	7.719131e+09   	50
+d48836c9	16588800       	0.000000e+00   	1.927652e+04   	3.502107e+03   	9.059964e+05   	1.804090e+10   	47
 
 ####################
-# COMB_2
+# COMB_3
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -62,7 +62,7 @@ a0677317	29491200       	0.000000e+00   	2.463348e+04   	2.985247e+03   	1.57654
 # number of implementations
 1
 #####
-# Model for cuda2_impl0 (Comb2)
+# Model for cuda2_impl0 (Comb3)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -72,19 +72,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-d48836c9	16588800       	0.000000e+00   	1.940135e+04   	4.068762e+03   	6.984485e+05   	1.414682e+10   	36
-901ddf46	7372800        	0.000000e+00   	1.194505e+04   	1.978674e+03   	3.822416e+05   	4.691180e+09   	32
-5c532f3b	51200          	0.000000e+00   	2.114340e+03   	2.957222e+02   	1.268604e+05   	2.734732e+08   	60
-69439308	1548800        	0.000000e+00   	5.046035e+03   	5.465455e+02   	1.766112e+05   	9.016412e+08   	35
 a0677317	29491200       	0.000000e+00   	2.329330e+04   	2.356823e+03   	1.094785e+06   	2.576222e+10   	47
+69439308	1548800        	0.000000e+00   	5.046035e+03   	5.465455e+02   	1.766112e+05   	9.016412e+08   	35
+5c532f3b	51200          	0.000000e+00   	2.114340e+03   	2.957222e+02   	1.268604e+05   	2.734732e+08   	60
+901ddf46	7372800        	0.000000e+00   	1.194505e+04   	1.978674e+03   	3.822416e+05   	4.691180e+09   	32
+d48836c9	16588800       	0.000000e+00   	1.940135e+04   	4.068762e+03   	6.984485e+05   	1.414682e+10   	36
 
 ####################
-# COMB_3
+# COMB_4
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -98,7 +98,7 @@ a0677317	29491200       	0.000000e+00   	2.329330e+04   	2.356823e+03   	1.09478
 # number of implementations
 1
 #####
-# Model for cuda3_impl0 (Comb3)
+# Model for cuda3_impl0 (Comb4)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -108,19 +108,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-d48836c9	16588800       	0.000000e+00   	1.848606e+04   	2.220768e+03   	5.545817e+05   	1.039998e+10   	30
-901ddf46	7372800        	0.000000e+00   	1.174012e+04   	1.793250e+03   	3.991641e+05   	4.795570e+09   	34
-5c532f3b	51200          	0.000000e+00   	2.130842e+03   	3.337398e+02   	1.576823e+05   	3.442383e+08   	74
-69439308	1548800        	0.000000e+00   	5.078755e+03   	5.140761e+02   	2.437802e+05   	1.250785e+09   	48
 a0677317	29491200       	0.000000e+00   	2.451908e+04   	3.131104e+03   	5.884580e+05   	1.466374e+10   	24
+69439308	1548800        	0.000000e+00   	5.078755e+03   	5.140761e+02   	2.437802e+05   	1.250785e+09   	48
+5c532f3b	51200          	0.000000e+00   	2.130842e+03   	3.337398e+02   	1.576823e+05   	3.442383e+08   	74
+901ddf46	7372800        	0.000000e+00   	1.174012e+04   	1.793250e+03   	3.991641e+05   	4.795570e+09   	34
+d48836c9	16588800       	0.000000e+00   	1.848606e+04   	2.220768e+03   	5.545817e+05   	1.039998e+10   	30
 
 ####################
-# COMB_0
+# COMB_1
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -134,7 +134,7 @@ a0677317	29491200       	0.000000e+00   	2.451908e+04   	3.131104e+03   	5.88458
 # number of implementations
 1
 #####
-# Model for cuda1_impl0 (Comb0)
+# Model for cuda1_impl0 (Comb1)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -144,19 +144,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-d48836c9	16588800       	0.000000e+00   	1.807832e+04   	2.125912e+03   	7.412111e+05   	1.358515e+10   	41
-5c532f3b	51200          	0.000000e+00   	2.127387e+03   	2.904710e+02   	1.404075e+05   	3.042697e+08   	66
-901ddf46	7372800        	0.000000e+00   	1.177248e+04   	1.259016e+03   	4.002642e+05   	4.765995e+09   	34
-69439308	1548800        	0.000000e+00   	4.993474e+03   	5.010162e+02   	2.546672e+05   	1.284476e+09   	51
 a0677317	29491200       	0.000000e+00   	2.412058e+04   	2.891586e+03   	1.206029e+06   	2.950819e+10   	50
+69439308	1548800        	0.000000e+00   	4.993474e+03   	5.010162e+02   	2.546672e+05   	1.284476e+09   	51
+901ddf46	7372800        	0.000000e+00   	1.177248e+04   	1.259016e+03   	4.002642e+05   	4.765995e+09   	34
+5c532f3b	51200          	0.000000e+00   	2.127387e+03   	2.904710e+02   	1.404075e+05   	3.042697e+08   	66
+d48836c9	16588800       	0.000000e+00   	1.807832e+04   	2.125912e+03   	7.412111e+05   	1.358515e+10   	41
 
 ####################
-# COMB_4
+# COMB_2
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 0
 ####################
 # DEV_0
@@ -170,7 +170,7 @@ a0677317	29491200       	0.000000e+00   	2.412058e+04   	2.891586e+03   	1.20602
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb4)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -180,9 +180,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-d48836c9	16588800       	0.000000e+00   	3.521786e+04   	3.719259e+03   	2.183508e+06   	7.775611e+10   	62
-69439308	1548800        	0.000000e+00   	1.965233e+03   	3.623952e+02   	7.271360e+04   	1.477584e+08   	37
-901ddf46	7372800        	0.000000e+00   	1.125962e+04   	1.634952e+03   	5.855000e+05   	6.731505e+09   	52
-5c532f3b	51200          	0.000000e+00   	4.077398e+01   	4.776338e+00   	2.487213e+03   	1.028052e+05   	61
 a0677317	29491200       	0.000000e+00   	7.956441e+04   	8.548094e+03   	5.410380e+06   	4.354424e+11   	68
+5c532f3b	51200          	0.000000e+00   	4.077398e+01   	4.776338e+00   	2.487213e+03   	1.028052e+05   	61
+901ddf46	7372800        	0.000000e+00   	1.114621e+04   	1.459505e+03   	3.042915e+06   	3.449850e+10   	273
+69439308	1548800        	0.000000e+00   	1.965233e+03   	3.623952e+02   	7.271360e+04   	1.477584e+08   	37
+d48836c9	16588800       	0.000000e+00   	3.521786e+04   	3.719259e+03   	2.183508e+06   	7.775611e+10   	62
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dsyrk.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dsyrk.sirocco
index 66a3a6695d396095bd3248adadafa9c1f5ed52be..96de8105d90a0747521872794e2445e3e1134662 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/dsyrk.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dsyrk.sirocco
@@ -7,12 +7,12 @@
 # number of combinations
 5
 ####################
-# COMB_4
+# COMB_2
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 0
 ####################
 # DEV_0
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb4)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,19 +36,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.671926e+04   	6.264954e+03   	4.868973e+07   	1.839896e+12   	1326
-6ab5620	102400         	0.000000e+00   	3.685897e+01   	6.246340e+00   	2.291522e+05   	8.688881e+06   	6217
-34b59a6f	3097600        	0.000000e+00   	3.808134e+03   	7.661841e+02   	8.320772e+06   	3.296929e+10   	2185
-50116ceb	33177600       	0.000000e+00   	1.197936e+05   	2.202875e+04   	9.260042e+07   	1.146804e+13   	773
 ae9b1fd5	58982400       	0.000000e+00   	2.500810e+05   	3.400228e+04   	1.668040e+08   	4.248568e+13   	667
+50116ceb	33177600       	0.000000e+00   	1.197936e+05   	2.202875e+04   	9.260042e+07   	1.146804e+13   	773
+34b59a6f	3097600        	0.000000e+00   	3.808134e+03   	7.661841e+02   	8.320772e+06   	3.296929e+10   	2185
+06ab5620	102400         	0.000000e+00   	3.685897e+01   	6.246340e+00   	2.291522e+05   	8.688881e+06   	6217
+a1187f60	14745600       	0.000000e+00   	3.750924e+04   	7.601332e+03   	1.832702e+08   	7.156640e+12   	4886
 
 ####################
-# COMB_2
+# COMB_0
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -62,7 +62,7 @@ ae9b1fd5	58982400       	0.000000e+00   	2.500810e+05   	3.400228e+04   	1.66804
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb2)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -72,11 +72,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	1.225366e+03   	1.055960e+02   	2.940879e+05   	3.630415e+08   	240
-6ab5620	102400         	0.000000e+00   	6.983900e+01   	1.260925e+01   	8.380680e+02   	6.043775e+04   	12
-34b59a6f	3097600        	0.000000e+00   	2.036579e+02   	2.324388e+01   	5.885713e+04   	1.214286e+07   	289
-50116ceb	33177600       	0.000000e+00   	3.666675e+03   	2.800845e+02   	7.150015e+05   	2.636975e+09   	195
 ae9b1fd5	58982400       	0.000000e+00   	7.329175e+03   	4.915258e+02   	1.693039e+06   	1.246439e+10   	231
+50116ceb	33177600       	0.000000e+00   	3.666675e+03   	2.800845e+02   	7.150015e+05   	2.636975e+09   	195
+34b59a6f	3097600        	0.000000e+00   	2.036579e+02   	2.324388e+01   	5.885713e+04   	1.214286e+07   	289
+06ab5620	102400         	0.000000e+00   	6.983900e+01   	1.260925e+01   	8.380680e+02   	6.043775e+04   	12
+a1187f60	14745600       	0.000000e+00   	1.243616e+03   	7.741866e+01   	8.033757e+05   	1.002962e+09   	646
 
 ####################
 # COMB_1
@@ -84,7 +84,7 @@ ae9b1fd5	58982400       	0.000000e+00   	7.329175e+03   	4.915258e+02   	1.69303
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -108,19 +108,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	1.251704e+03   	9.523925e+01   	2.928988e+05   	3.687452e+08   	234
-6ab5620	102400         	0.000000e+00   	7.712755e+01   	1.662959e+01   	8.484030e+02   	6.847722e+04   	11
-34b59a6f	3097600        	0.000000e+00   	2.078053e+02   	2.202377e+01   	5.402939e+04   	1.135371e+07   	260
-50116ceb	33177600       	0.000000e+00   	3.720059e+03   	2.853133e+02   	8.295732e+05   	3.104214e+09   	223
 ae9b1fd5	58982400       	0.000000e+00   	7.383529e+03   	3.772204e+02   	1.580075e+06   	1.169698e+10   	214
+50116ceb	33177600       	0.000000e+00   	3.720059e+03   	2.853133e+02   	8.295732e+05   	3.104214e+09   	223
+34b59a6f	3097600        	0.000000e+00   	2.078053e+02   	2.202377e+01   	5.402939e+04   	1.135371e+07   	260
+06ab5620	102400         	0.000000e+00   	7.712755e+01   	1.662959e+01   	8.484030e+02   	6.847722e+04   	11
+a1187f60	14745600       	0.000000e+00   	1.244957e+03   	7.232457e+01   	8.042425e+05   	1.004627e+09   	646
 
 ####################
-# COMB_0
+# COMB_3
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -134,7 +134,7 @@ ae9b1fd5	58982400       	0.000000e+00   	7.383529e+03   	3.772204e+02   	1.58007
 # number of implementations
 1
 #####
-# Model for cuda2_impl0 (Comb0)
+# Model for cuda2_impl0 (Comb3)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -144,19 +144,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	1.252296e+03   	1.169465e+02   	2.955417e+05   	3.733333e+08   	236
-6ab5620	102400         	0.000000e+00   	7.692512e+01   	1.259036e+01   	1.230802e+03   	9.721587e+04   	16
-34b59a6f	3097600        	0.000000e+00   	2.079242e+02   	2.471557e+01   	6.029802e+04   	1.271457e+07   	290
-50116ceb	33177600       	0.000000e+00   	3.744678e+03   	3.676926e+02   	7.938716e+05   	3.001455e+09   	212
 ae9b1fd5	58982400       	0.000000e+00   	7.454402e+03   	4.686588e+02   	1.669786e+06   	1.249646e+10   	224
+50116ceb	33177600       	0.000000e+00   	3.744678e+03   	3.676926e+02   	7.938716e+05   	3.001455e+09   	212
+34b59a6f	3097600        	0.000000e+00   	2.079242e+02   	2.471557e+01   	6.029802e+04   	1.271457e+07   	290
+06ab5620	102400         	0.000000e+00   	7.692512e+01   	1.259036e+01   	1.230802e+03   	9.721587e+04   	16
+a1187f60	14745600       	0.000000e+00   	1.252296e+03   	1.169465e+02   	2.955417e+05   	3.733333e+08   	236
 
 ####################
-# COMB_3
+# COMB_4
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -170,7 +170,7 @@ ae9b1fd5	58982400       	0.000000e+00   	7.454402e+03   	4.686588e+02   	1.66978
 # number of implementations
 1
 #####
-# Model for cuda3_impl0 (Comb3)
+# Model for cuda3_impl0 (Comb4)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -180,9 +180,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	1.227027e+03   	1.116503e+02   	2.908055e+05   	3.597807e+08   	237
-6ab5620	102400         	0.000000e+00   	7.100592e+01   	1.678181e+01   	8.520710e+02   	6.388163e+04   	12
-34b59a6f	3097600        	0.000000e+00   	2.027211e+02   	2.465123e+01   	5.331564e+04   	1.096802e+07   	263
-50116ceb	33177600       	0.000000e+00   	3.582949e+03   	2.599939e+02   	6.341819e+05   	2.284206e+09   	177
 ae9b1fd5	58982400       	0.000000e+00   	7.239223e+03   	4.831241e+02   	1.360974e+06   	9.896276e+09   	188
+50116ceb	33177600       	0.000000e+00   	3.582949e+03   	2.599939e+02   	6.341819e+05   	2.284206e+09   	177
+34b59a6f	3097600        	0.000000e+00   	2.027211e+02   	2.465123e+01   	5.331564e+04   	1.096802e+07   	263
+06ab5620	102400         	0.000000e+00   	7.100592e+01   	1.678181e+01   	8.520710e+02   	6.388163e+04   	12
+a1187f60	14745600       	0.000000e+00   	1.227027e+03   	1.116503e+02   	2.908055e+05   	3.597807e+08   	237
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dtrmm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrmm.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..ebe055f41eb63d80c63c6abac37bd0e498f7fb51
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrmm.sirocco
@@ -0,0 +1,104 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+3
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	14745600       	0.000000e+00   	3.793090e+04   	6.009200e+03   	7.665835e+07   	2.980700e+12   	2021
+
+####################
+# COMB_1
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+1
+####################
+# DEV_0
+# device id 
+1
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cuda1_impl0 (Comb1)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	14745600       	0.000000e+00   	1.955835e+03   	7.118363e+01   	5.613246e+05   	1.099313e+09   	287
+
+####################
+# COMB_0
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+1
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cuda0_impl0 (Comb0)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	14745600       	0.000000e+00   	1.964850e+03   	6.368649e+01   	5.069313e+05   	9.970904e+08   	258
+
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dtrsm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrsm.sirocco
index 7a19b71921b93c897aea1065a2f695ef56eda913..6c83e4ed2cb18d23133a25cdcaddc195e34cb90a 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/dtrsm.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrsm.sirocco
@@ -7,12 +7,12 @@
 # number of combinations
 5
 ####################
-# COMB_4
+# COMB_2
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 0
 ####################
 # DEV_0
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb4)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,19 +36,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.428845e+04   	6.014106e+03   	4.670087e+07   	1.650564e+12   	1362
-6ab5620	102400         	0.000000e+00   	4.315566e+01   	9.048618e+00   	2.734774e+05   	1.232096e+07   	6337
-34b59a6f	3097600        	0.000000e+00   	3.493952e+03   	6.537880e+02   	8.623074e+06   	3.118353e+10   	2468
-50116ceb	33177600       	0.000000e+00   	1.022247e+05   	1.393583e+04   	9.251336e+07   	9.632909e+12   	905
 ae9b1fd5	58982400       	0.000000e+00   	2.235792e+05   	2.485110e+04   	1.562819e+08   	3.537307e+13   	699
+50116ceb	33177600       	0.000000e+00   	1.022247e+05   	1.393583e+04   	9.251336e+07   	9.632909e+12   	905
+34b59a6f	3097600        	0.000000e+00   	3.493952e+03   	6.537880e+02   	8.623074e+06   	3.118353e+10   	2468
+06ab5620	102400         	0.000000e+00   	4.315566e+01   	9.048618e+00   	2.734774e+05   	1.232096e+07   	6337
+a1187f60	14745600       	0.000000e+00   	3.930876e+04   	9.409133e+03   	1.559379e+08   	6.480929e+12   	3967
 
 ####################
-# COMB_0
+# COMB_3
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -62,7 +62,7 @@ ae9b1fd5	58982400       	0.000000e+00   	2.235792e+05   	2.485110e+04   	1.56281
 # number of implementations
 1
 #####
-# Model for cuda2_impl0 (Comb0)
+# Model for cuda2_impl0 (Comb3)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -72,11 +72,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.276119e+03   	3.115623e+02   	8.157537e+05   	2.696677e+09   	249
-6ab5620	102400         	0.000000e+00   	5.400294e+01   	1.227261e+01   	9.720530e+02   	5.520483e+04   	18
-34b59a6f	3097600        	0.000000e+00   	1.059018e+03   	1.208041e+02   	2.509872e+05   	2.692586e+08   	237
-50116ceb	33177600       	0.000000e+00   	7.073186e+03   	6.003818e+02   	1.082197e+06   	7.709734e+09   	153
 ae9b1fd5	58982400       	0.000000e+00   	1.275670e+04   	1.000532e+03   	2.462043e+06   	3.160076e+10   	193
+50116ceb	33177600       	0.000000e+00   	7.073186e+03   	6.003818e+02   	1.082197e+06   	7.709734e+09   	153
+34b59a6f	3097600        	0.000000e+00   	1.059018e+03   	1.208041e+02   	2.509872e+05   	2.692586e+08   	237
+06ab5620	102400         	0.000000e+00   	5.400294e+01   	1.227261e+01   	9.720530e+02   	5.520483e+04   	18
+a1187f60	14745600       	0.000000e+00   	3.276119e+03   	3.115623e+02   	8.157537e+05   	2.696677e+09   	249
 
 ####################
 # COMB_1
@@ -84,7 +84,7 @@ ae9b1fd5	58982400       	0.000000e+00   	1.275670e+04   	1.000532e+03   	2.46204
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -108,19 +108,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.300871e+03   	2.581032e+02   	6.568733e+05   	2.181511e+09   	199
-6ab5620	102400         	0.000000e+00   	1.639117e+02   	3.695355e+01   	1.966940e+03   	3.387912e+05   	12
-34b59a6f	3097600        	0.000000e+00   	1.035320e+03   	1.634986e+02   	2.370884e+05   	2.515840e+08   	229
-50116ceb	33177600       	0.000000e+00   	7.177520e+03   	7.682785e+02   	1.342196e+06   	9.744017e+09   	187
 ae9b1fd5	58982400       	0.000000e+00   	1.284895e+04   	1.132613e+03   	2.479846e+06   	3.211099e+10   	193
+50116ceb	33177600       	0.000000e+00   	7.177520e+03   	7.682785e+02   	1.342196e+06   	9.744017e+09   	187
+34b59a6f	3097600        	0.000000e+00   	1.035320e+03   	1.634986e+02   	2.370884e+05   	2.515840e+08   	229
+06ab5620	102400         	0.000000e+00   	1.639117e+02   	3.695355e+01   	1.966940e+03   	3.387912e+05   	12
+a1187f60	14745600       	0.000000e+00   	3.180532e+03   	1.979664e+02   	5.340114e+06   	1.705021e+10   	1679
 
 ####################
-# COMB_3
+# COMB_4
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -134,7 +134,7 @@ ae9b1fd5	58982400       	0.000000e+00   	1.284895e+04   	1.132613e+03   	2.47984
 # number of implementations
 1
 #####
-# Model for cuda3_impl0 (Comb3)
+# Model for cuda3_impl0 (Comb4)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -144,19 +144,19 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.224312e+03   	2.905618e+02   	8.576671e+05   	2.787844e+09   	266
-6ab5620	102400         	0.000000e+00   	1.238758e+02   	2.453256e+01   	1.238758e+03   	1.594706e+05   	10
-34b59a6f	3097600        	0.000000e+00   	1.043152e+03   	1.402538e+02   	2.597449e+05   	2.758515e+08   	249
-50116ceb	33177600       	0.000000e+00   	6.893239e+03   	4.958485e+02   	1.557872e+06   	1.079435e+10   	226
 ae9b1fd5	58982400       	0.000000e+00   	1.233960e+04   	7.352896e+02   	2.924485e+06   	3.621511e+10   	237
+50116ceb	33177600       	0.000000e+00   	6.893239e+03   	4.958485e+02   	1.557872e+06   	1.079435e+10   	226
+34b59a6f	3097600        	0.000000e+00   	1.043152e+03   	1.402538e+02   	2.597449e+05   	2.758515e+08   	249
+06ab5620	102400         	0.000000e+00   	1.238758e+02   	2.453256e+01   	1.238758e+03   	1.594706e+05   	10
+a1187f60	14745600       	0.000000e+00   	3.224312e+03   	2.905618e+02   	8.576671e+05   	2.787844e+09   	266
 
 ####################
-# COMB_2
+# COMB_0
 # number of types devices
 1
 ####################
 # DEV_0
-# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
 1
 ####################
 # DEV_0
@@ -170,7 +170,7 @@ ae9b1fd5	58982400       	0.000000e+00   	1.233960e+04   	7.352896e+02   	2.92448
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb2)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -180,9 +180,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a1187f60	14745600       	0.000000e+00   	3.226919e+03   	2.819444e+02   	8.357719e+05   	2.717557e+09   	259
-6ab5620	102400         	0.000000e+00   	7.576700e+01   	1.461196e+01   	1.288039e+03   	1.012205e+05   	17
-34b59a6f	3097600        	0.000000e+00   	1.050995e+03   	1.429382e+02   	2.385759e+05   	2.553801e+08   	227
-50116ceb	33177600       	0.000000e+00   	7.077068e+03   	7.343420e+02   	1.288026e+06   	9.213596e+09   	182
 ae9b1fd5	58982400       	0.000000e+00   	1.259917e+04   	1.081288e+03   	2.797016e+06   	3.549963e+10   	222
+50116ceb	33177600       	0.000000e+00   	7.077068e+03   	7.343420e+02   	1.288026e+06   	9.213596e+09   	182
+34b59a6f	3097600        	0.000000e+00   	1.050995e+03   	1.429382e+02   	2.385759e+05   	2.553801e+08   	227
+06ab5620	102400         	0.000000e+00   	7.576700e+01   	1.461196e+01   	1.288039e+03   	1.012205e+05   	17
+a1187f60	14745600       	0.000000e+00   	3.191368e+03   	1.968492e+02   	5.205120e+06   	1.667465e+10   	1631
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/dtrtri.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrtri.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..841ec75946f4de305cab428dfeb0a7ce8e8866b2
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/dtrtri.sirocco
@@ -0,0 +1,40 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+1
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+901ddf46	7372800        	0.000000e+00   	2.555721e+04   	5.276570e+03   	3.578009e+06   	9.534185e+10   	140
+
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/sgemm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/sgemm.sirocco
index b093180c891e0e63b83da2d89c33ca20cbfb96e5..94e8a05dce7f846abcdfae76cdc94ddb04bac27b 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/sgemm.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/sgemm.sirocco
@@ -7,7 +7,7 @@
 # number of combinations
 5
 ####################
-# COMB_0
+# COMB_2
 # number of types devices
 1
 ####################
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb0)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 6
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,12 +36,12 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-f74a4f19	44236800       	0.000000e+00   	2.633445e+05   	5.249424e+04   	6.322902e+08   	1.731265e+14   	2401
-dc7b85e2	24883200       	0.000000e+00   	1.120333e+05   	2.070542e+04   	2.092782e+08   	2.424696e+13   	1868
-744ff412	11059200       	0.000000e+00   	3.623402e+04   	6.546678e+03   	1.580528e+08   	5.913839e+12   	4362
-9427311d	2323200        	0.000000e+00   	3.732336e+03   	6.841164e+02   	3.950678e+07   	1.524065e+11   	10585
-b63efa5a	76800          	0.000000e+00   	3.040738e+01   	3.904133e+00   	2.440131e+06   	7.542116e+07   	80248
 84e38ff9	1228800        	0.000000e+00   	1.962744e+03   	4.745716e+02   	4.710585e+04   	9.786197e+07   	24
+b63efa5a	76800          	0.000000e+00   	3.040738e+01   	3.904133e+00   	2.440131e+06   	7.542116e+07   	80248
+9427311d	2323200        	0.000000e+00   	3.732336e+03   	6.841164e+02   	3.950678e+07   	1.524065e+11   	10585
+744ff412	11059200       	0.000000e+00   	3.776331e+04   	7.086585e+03   	2.317157e+08   	9.058498e+12   	6136
+dc7b85e2	24883200       	0.000000e+00   	1.120333e+05   	2.070542e+04   	2.092782e+08   	2.424696e+13   	1868
+f74a4f19	44236800       	0.000000e+00   	2.633445e+05   	5.249424e+04   	6.322902e+08   	1.731265e+14   	2401
 
 ####################
 # COMB_3
@@ -73,14 +73,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-f74a4f19	44236800       	0.000000e+00   	6.265723e+03   	4.806927e+02   	8.577149e+07   	5.405835e+11   	13689
-dc7b85e2	24883200       	0.000000e+00   	2.982067e+03   	1.577603e+02   	2.606923e+07   	7.795776e+10   	8742
-744ff412	11059200       	0.000000e+00   	1.027724e+03   	6.416246e+01   	1.796770e+07   	1.853781e+10   	17483
-9427311d	2323200        	0.000000e+00   	1.681587e+02   	2.185477e+01   	2.332192e+06   	3.988026e+08   	13869
 b63efa5a	76800          	0.000000e+00   	4.561876e+01   	1.081980e+01   	6.934052e+03   	3.341172e+05   	152
+9427311d	2323200        	0.000000e+00   	1.681587e+02   	2.185477e+01   	2.332192e+06   	3.988026e+08   	13869
+744ff412	11059200       	0.000000e+00   	1.027724e+03   	6.416246e+01   	1.796770e+07   	1.853781e+10   	17483
+dc7b85e2	24883200       	0.000000e+00   	2.982067e+03   	1.577603e+02   	2.606923e+07   	7.795776e+10   	8742
+f74a4f19	44236800       	0.000000e+00   	6.265723e+03   	4.806927e+02   	8.577149e+07   	5.405835e+11   	13689
 
 ####################
-# COMB_1
+# COMB_0
 # number of types devices
 1
 ####################
@@ -99,7 +99,7 @@ b63efa5a	76800          	0.000000e+00   	4.561876e+01   	1.081980e+01   	6.93405
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb1)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -109,14 +109,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-f74a4f19	44236800       	0.000000e+00   	6.411657e+03   	4.740807e+02   	8.565973e+07   	5.522235e+11   	13360
-dc7b85e2	24883200       	0.000000e+00   	2.990259e+03   	1.556149e+02   	2.622756e+07   	7.863960e+10   	8771
-744ff412	11059200       	0.000000e+00   	1.026941e+03   	6.843339e+01   	1.818713e+07   	1.876005e+10   	17710
-9427311d	2323200        	0.000000e+00   	1.678676e+02   	2.188969e+01   	2.444656e+06   	4.173565e+08   	14563
 b63efa5a	76800          	0.000000e+00   	5.712863e+01   	1.016253e+01   	2.182314e+04   	1.286178e+06   	382
+9427311d	2323200        	0.000000e+00   	1.678676e+02   	2.188969e+01   	2.444656e+06   	4.173565e+08   	14563
+744ff412	11059200       	0.000000e+00   	9.242827e+02   	1.465376e+02   	4.502181e+07   	4.265884e+10   	48710
+dc7b85e2	24883200       	0.000000e+00   	2.990259e+03   	1.556149e+02   	2.622756e+07   	7.863960e+10   	8771
+f74a4f19	44236800       	0.000000e+00   	6.411657e+03   	4.740807e+02   	8.565973e+07   	5.522235e+11   	13360
 
 ####################
-# COMB_2
+# COMB_1
 # number of types devices
 1
 ####################
@@ -135,7 +135,7 @@ b63efa5a	76800          	0.000000e+00   	5.712863e+01   	1.016253e+01   	2.18231
 # number of implementations
 1
 #####
-# Model for cuda1_impl0 (Comb2)
+# Model for cuda1_impl0 (Comb1)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -145,11 +145,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-f74a4f19	44236800       	0.000000e+00   	6.216224e+03   	4.119793e+02   	8.361443e+07   	5.220491e+11   	13451
-dc7b85e2	24883200       	0.000000e+00   	3.034574e+03   	1.617988e+02   	2.660715e+07   	8.097090e+10   	8768
-744ff412	11059200       	0.000000e+00   	1.042160e+03   	6.826839e+01   	1.799915e+07   	1.883849e+10   	17271
-9427311d	2323200        	0.000000e+00   	1.706067e+02   	2.205696e+01   	2.522932e+06   	4.376237e+08   	14788
 b63efa5a	76800          	0.000000e+00   	4.872868e+01   	7.797709e+00   	3.376898e+04   	1.687655e+06   	693
+9427311d	2323200        	0.000000e+00   	1.706067e+02   	2.205696e+01   	2.522932e+06   	4.376237e+08   	14788
+744ff412	11059200       	0.000000e+00   	9.233103e+02   	1.525748e+02   	4.493289e+07   	4.261988e+10   	48665
+dc7b85e2	24883200       	0.000000e+00   	3.034574e+03   	1.617988e+02   	2.660715e+07   	8.097090e+10   	8768
+f74a4f19	44236800       	0.000000e+00   	6.216224e+03   	4.119793e+02   	8.361443e+07   	5.220491e+11   	13451
 
 ####################
 # COMB_4
@@ -181,9 +181,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-f74a4f19	44236800       	0.000000e+00   	6.193669e+03   	4.216424e+02   	8.780145e+07   	5.463333e+11   	14176
-dc7b85e2	24883200       	0.000000e+00   	3.030444e+03   	1.493135e+02   	2.715884e+07   	8.250317e+10   	8962
-744ff412	11059200       	0.000000e+00   	1.042297e+03   	6.563263e+01   	1.817663e+07   	1.902057e+10   	17439
-9427311d	2323200        	0.000000e+00   	1.710487e+02   	2.221991e+01   	2.555297e+06   	4.444559e+08   	14939
 b63efa5a	76800          	0.000000e+00   	5.246265e+01   	9.697468e+00   	1.453215e+04   	7.884446e+05   	277
+9427311d	2323200        	0.000000e+00   	1.710487e+02   	2.221991e+01   	2.555297e+06   	4.444559e+08   	14939
+744ff412	11059200       	0.000000e+00   	1.042297e+03   	6.563263e+01   	1.817663e+07   	1.902057e+10   	17439
+dc7b85e2	24883200       	0.000000e+00   	3.030444e+03   	1.493135e+02   	2.715884e+07   	8.250317e+10   	8962
+f74a4f19	44236800       	0.000000e+00   	6.193669e+03   	4.216424e+02   	8.780145e+07   	5.463333e+11   	14176
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/slauum.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/slauum.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..7bcb5922babe8fca6e3a6ba283626916fc71fd0d
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/slauum.sirocco
@@ -0,0 +1,40 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+1
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+901ddf46	3686400        	0.000000e+00   	7.577730e+03   	1.166374e+03   	1.932321e+06   	1.498952e+10   	255
+
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/splgsy.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/splgsy.sirocco
index c4530465ccc3e2a790829d43f79222c8e9336d37..5d67ef47fb4fc040e061c3f7a3702879ba5d01f6 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/splgsy.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/splgsy.sirocco
@@ -7,7 +7,7 @@
 # number of combinations
 1
 ####################
-# COMB_0
+# COMB_2
 # number of types devices
 1
 ####################
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb0)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 8
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,12 +36,12 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	3.545004e+04   	1.130964e+03   	1.871762e+07   	6.642158e+11   	528
-d48836c9	8294400        	0.000000e+00   	1.998968e+04   	3.810275e+02   	4.657595e+06   	9.313763e+10   	233
-901ddf46	3686400        	0.000000e+00   	8.939938e+03   	2.153220e+02   	1.231923e+07   	1.101971e+11   	1378
-69439308	774400         	0.000000e+00   	2.302314e+03   	5.466484e+02   	1.138264e+07   	2.768379e+10   	4944
-5c532f3b	25600          	0.000000e+00   	8.731844e+01   	8.227614e+00   	1.389149e+06   	1.223753e+08   	15909
-3442589a	6400           	0.000000e+00   	3.342405e+01   	1.257385e+01   	6.684810e+02   	2.550538e+04   	20
-30b2a96f	51200          	0.000000e+00   	1.475864e+02   	1.554810e+01   	1.136415e+04   	1.695808e+06   	77
 3fc0fdcd	409600         	0.000000e+00   	8.902086e+02   	1.436824e+02   	1.370921e+05   	1.252199e+08   	154
+30b2a96f	51200          	0.000000e+00   	1.475864e+02   	1.554810e+01   	1.136415e+04   	1.695808e+06   	77
+3442589a	6400           	0.000000e+00   	3.342405e+01   	1.257385e+01   	6.684810e+02   	2.550538e+04   	20
+5c532f3b	25600          	0.000000e+00   	8.731844e+01   	8.227614e+00   	1.389149e+06   	1.223753e+08   	15909
+69439308	774400         	0.000000e+00   	2.302314e+03   	5.466484e+02   	1.138264e+07   	2.768379e+10   	4944
+901ddf46	3686400        	0.000000e+00   	8.479906e+03   	1.531934e+03   	3.893125e+07   	3.409076e+11   	4591
+d48836c9	8294400        	0.000000e+00   	1.998968e+04   	3.810275e+02   	4.657595e+06   	9.313763e+10   	233
+a0677317	14745600       	0.000000e+00   	3.545004e+04   	1.130964e+03   	1.871762e+07   	6.642158e+11   	528
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/spotrf.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/spotrf.sirocco
index d0b792059e70b4fd554ef3d3cda822f17510b3f8..8829d6ea39b999803a57effcb4b21886529bff59 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/spotrf.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/spotrf.sirocco
@@ -7,7 +7,7 @@
 # number of combinations
 5
 ####################
-# COMB_1
+# COMB_0
 # number of types devices
 1
 ####################
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb1)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,14 +36,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	1.725922e+04   	2.264939e+03   	1.052812e+06   	1.848364e+10   	61
-d48836c9	8294400        	0.000000e+00   	1.618055e+04   	2.196987e+03   	7.766664e+05   	1.279857e+10   	48
-69439308	774400         	0.000000e+00   	3.928085e+03   	4.967651e+02   	1.414111e+05   	5.643587e+08   	36
-5c532f3b	25600          	0.000000e+00   	2.070017e+03   	2.556262e+02   	1.283410e+05   	2.697195e+08   	62
 901ddf46	3686400        	0.000000e+00   	9.570246e+03   	1.453408e+03   	5.263635e+05   	5.153611e+09   	55
+5c532f3b	25600          	0.000000e+00   	2.070017e+03   	2.556262e+02   	1.283410e+05   	2.697195e+08   	62
+69439308	774400         	0.000000e+00   	3.928085e+03   	4.967651e+02   	1.414111e+05   	5.643587e+08   	36
+d48836c9	8294400        	0.000000e+00   	1.618055e+04   	2.196987e+03   	7.766664e+05   	1.279857e+10   	48
+a0677317	14745600       	0.000000e+00   	1.725922e+04   	2.264939e+03   	1.052812e+06   	1.848364e+10   	61
 
 ####################
-# COMB_2
+# COMB_1
 # number of types devices
 1
 ####################
@@ -62,7 +62,7 @@ d48836c9	8294400        	0.000000e+00   	1.618055e+04   	2.196987e+03   	7.76666
 # number of implementations
 1
 #####
-# Model for cuda1_impl0 (Comb2)
+# Model for cuda1_impl0 (Comb1)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -72,11 +72,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	1.689494e+04   	1.439976e+03   	1.081276e+06   	1.840081e+10   	64
-d48836c9	8294400        	0.000000e+00   	1.549399e+04   	1.742327e+03   	8.211813e+05   	1.288426e+10   	53
-69439308	774400         	0.000000e+00   	3.925510e+03   	5.372277e+02   	1.334673e+05   	5.337401e+08   	34
-5c532f3b	25600          	0.000000e+00   	2.102179e+03   	3.123586e+02   	1.303351e+05   	2.800370e+08   	62
 901ddf46	3686400        	0.000000e+00   	9.539420e+03   	1.257811e+03   	4.292739e+05   	4.166218e+09   	45
+5c532f3b	25600          	0.000000e+00   	2.102179e+03   	3.123586e+02   	1.303351e+05   	2.800370e+08   	62
+69439308	774400         	0.000000e+00   	3.925510e+03   	5.372277e+02   	1.334673e+05   	5.337401e+08   	34
+d48836c9	8294400        	0.000000e+00   	1.549399e+04   	1.742327e+03   	8.211813e+05   	1.288426e+10   	53
+a0677317	14745600       	0.000000e+00   	1.689494e+04   	1.439976e+03   	1.081276e+06   	1.840081e+10   	64
 
 ####################
 # COMB_3
@@ -108,11 +108,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	1.679050e+04   	1.864821e+03   	5.037149e+05   	8.561949e+09   	30
-d48836c9	8294400        	0.000000e+00   	1.650986e+04   	2.615948e+03   	4.457661e+05   	7.544300e+09   	27
-69439308	774400         	0.000000e+00   	4.072426e+03   	6.492225e+02   	1.384625e+05   	5.782087e+08   	34
+901ddf46	3686400        	0.000000e+00   	9.596093e+03   	1.252122e+03   	2.686906e+05   	2.622279e+09   	28
 5c532f3b	25600          	0.000000e+00   	2.106632e+03   	2.976700e+02   	1.390377e+05   	2.987493e+08   	66
-901ddf46        3686400        	0.000000e+00   	9.596093e+03   	1.252122e+03   	2.686906e+05   	2.622279e+09   	28
+69439308	774400         	0.000000e+00   	4.072426e+03   	6.492225e+02   	1.384625e+05   	5.782087e+08   	34
+d48836c9	8294400        	0.000000e+00   	1.650986e+04   	2.615948e+03   	4.457661e+05   	7.544300e+09   	27
+a0677317	14745600       	0.000000e+00   	1.679050e+04   	1.864821e+03   	5.037149e+05   	8.561949e+09   	30
 
 ####################
 # COMB_4
@@ -144,14 +144,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	1.640619e+04   	1.490045e+03   	6.398413e+05   	1.058394e+10   	39
-d48836c9	8294400        	0.000000e+00   	1.538862e+04   	2.385658e+03   	6.155449e+05   	9.700043e+09   	40
-69439308	774400         	0.000000e+00   	4.069845e+03   	5.836273e+02   	1.627938e+05   	6.761704e+08   	40
-5c532f3b	25600          	0.000000e+00   	2.134159e+03   	2.682985e+02   	1.323178e+05   	2.868503e+08   	62
 901ddf46	3686400        	0.000000e+00   	9.181625e+03   	8.594056e+02   	3.580834e+05   	3.316592e+09   	39
+5c532f3b	25600          	0.000000e+00   	2.134159e+03   	2.682985e+02   	1.323178e+05   	2.868503e+08   	62
+69439308	774400         	0.000000e+00   	4.069845e+03   	5.836273e+02   	1.627938e+05   	6.761704e+08   	40
+d48836c9	8294400        	0.000000e+00   	1.538862e+04   	2.385658e+03   	6.155449e+05   	9.700043e+09   	40
+a0677317	14745600       	0.000000e+00   	1.640619e+04   	1.490045e+03   	6.398413e+05   	1.058394e+10   	39
 
 ####################
-# COMB_0
+# COMB_2
 # number of types devices
 1
 ####################
@@ -170,7 +170,7 @@ d48836c9	8294400        	0.000000e+00   	1.538862e+04   	2.385658e+03   	6.15544
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb0)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 7
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -180,11 +180,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-a0677317	14745600       	0.000000e+00   	4.292375e+04   	3.070461e+03   	2.704196e+06   	1.166682e+11   	63
-d48836c9	8294400        	0.000000e+00   	1.889580e+04   	1.888554e+03   	1.473872e+06   	2.812818e+10   	78
-69439308	774400         	0.000000e+00   	1.554382e+03   	1.710542e+02   	5.595775e+04   	8.803307e+07   	36
-5c532f3b	25600          	0.000000e+00   	7.450665e+01   	4.146608e+00   	4.097866e+03   	3.062640e+05   	55
-901ddf46	3686400        	0.000000e+00   	6.920145e+03   	2.464678e+02   	2.214446e+05   	1.534373e+09   	32
-3fc0fdcd	409600         	0.000000e+00   	1.036386e+03   	1.971561e+02   	6.011040e+04   	6.455208e+07   	58
 3442589a	6400           	0.000000e+00   	1.971042e+01   	5.545559e+00   	3.744980e+02   	7.965824e+03   	19
+3fc0fdcd	409600         	0.000000e+00   	1.036386e+03   	1.971561e+02   	6.011040e+04   	6.455208e+07   	58
+901ddf46	3686400        	0.000000e+00   	6.718118e+03   	9.120895e+02   	1.907945e+06   	1.305406e+10   	284
+5c532f3b	25600          	0.000000e+00   	7.450665e+01   	4.146608e+00   	4.097866e+03   	3.062640e+05   	55
+69439308	774400         	0.000000e+00   	1.554382e+03   	1.710542e+02   	5.595775e+04   	8.803307e+07   	36
+d48836c9	8294400        	0.000000e+00   	1.889580e+04   	1.888554e+03   	1.473872e+06   	2.812818e+10   	78
+a0677317	14745600       	0.000000e+00   	4.292375e+04   	3.070461e+03   	2.704196e+06   	1.166682e+11   	63
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/ssyrk.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/ssyrk.sirocco
index 1eaf9507c1c58c38871e877df6499a3450537dfb..44cd7d56b5f03a2b3e8672e21d7eec666753d042 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/ssyrk.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/ssyrk.sirocco
@@ -7,7 +7,7 @@
 # number of combinations
 5
 ####################
-# COMB_1
+# COMB_0
 # number of types devices
 1
 ####################
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb1)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,14 +36,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	3.885487e+03   	3.138453e+02   	1.266669e+06   	4.953736e+09   	326
-50116ceb	16588800       	0.000000e+00   	1.989457e+03   	1.846987e+02   	4.018704e+05   	8.063950e+08   	202
-a1187f60	7372800        	0.000000e+00   	6.844636e+02   	6.633616e+01   	2.457224e+05   	1.697678e+08   	359
+06ab5620	51200          	0.000000e+00   	6.011745e+01   	1.013925e+01   	1.322584e+03   	8.177208e+04   	22
 34b59a6f	1548800        	0.000000e+00   	1.274568e+02   	1.956594e+01   	3.097201e+04   	4.040621e+06   	243
-6ab5620	51200          	0.000000e+00   	6.011745e+01   	1.013925e+01   	1.322584e+03   	8.177208e+04   	22
+a1187f60	7372800        	0.000000e+00   	6.861557e+02   	5.462498e+01   	5.338291e+05   	3.686114e+08   	778
+50116ceb	16588800       	0.000000e+00   	1.989457e+03   	1.846987e+02   	4.018704e+05   	8.063950e+08   	202
+ae9b1fd5	29491200       	0.000000e+00   	3.885487e+03   	3.138453e+02   	1.266669e+06   	4.953736e+09   	326
 
 ####################
-# COMB_0
+# COMB_2
 # number of types devices
 1
 ####################
@@ -62,7 +62,7 @@ a1187f60	7372800        	0.000000e+00   	6.844636e+02   	6.633616e+01   	2.45722
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb0)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 7
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -72,16 +72,16 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.358370e+05   	2.496094e+04   	3.762684e+08   	5.283701e+13   	2770
-50116ceb	16588800       	0.000000e+00   	5.960685e+04   	1.152639e+04   	8.929106e+07   	5.521380e+12   	1498
-a1187f60	7372800        	0.000000e+00   	1.879259e+04   	3.534541e+03   	7.201320e+07   	1.401187e+12   	3832
-34b59a6f	1548800        	0.000000e+00   	2.022561e+03   	3.698244e+02   	8.274299e+06   	1.729480e+10   	4091
-6ab5620	51200          	0.000000e+00   	2.572545e+01   	4.086938e+00   	1.642570e+05   	4.332233e+06   	6385
-e78115ba	57600          	0.000000e+00   	4.722764e+01   	8.558222e+00   	1.558512e+03   	7.602186e+04   	33
 72838077	819200         	0.000000e+00   	1.400813e+03   	3.187817e+02   	8.264794e+04   	1.217700e+08   	59
+e78115ba	57600          	0.000000e+00   	4.722764e+01   	8.558222e+00   	1.558512e+03   	7.602186e+04   	33
+06ab5620	51200          	0.000000e+00   	2.572545e+01   	4.086938e+00   	1.642570e+05   	4.332233e+06   	6385
+34b59a6f	1548800        	0.000000e+00   	2.022561e+03   	3.698244e+02   	8.274299e+06   	1.729480e+10   	4091
+a1187f60	7372800        	0.000000e+00   	1.843186e+04   	3.887728e+03   	1.452246e+08   	2.795846e+12   	7879
+50116ceb	16588800       	0.000000e+00   	5.960685e+04   	1.152639e+04   	8.929106e+07   	5.521380e+12   	1498
+ae9b1fd5	29491200       	0.000000e+00   	1.358370e+05   	2.496094e+04   	3.762684e+08   	5.283701e+13   	2770
 
 ####################
-# COMB_2
+# COMB_1
 # number of types devices
 1
 ####################
@@ -100,7 +100,7 @@ e78115ba	57600          	0.000000e+00   	4.722764e+01   	8.558222e+00   	1.55851
 # number of implementations
 1
 #####
-# Model for cuda1_impl0 (Comb2)
+# Model for cuda1_impl0 (Comb1)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -110,11 +110,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	3.928459e+03   	3.071670e+02   	1.312105e+06   	5.186065e+09   	334
-50116ceb	16588800       	0.000000e+00   	1.978866e+03   	1.664848e+02   	5.065897e+05   	1.009569e+09   	256
-a1187f60	7372800        	0.000000e+00   	6.835967e+02   	5.317005e+01   	1.893563e+05   	1.302264e+08   	277
+06ab5620	51200          	0.000000e+00   	6.087710e+01   	1.044897e+01   	6.087710e+02   	3.815202e+04   	10
 34b59a6f	1548800        	0.000000e+00   	1.295589e+02   	1.835748e+01   	3.588782e+04   	4.742936e+06   	277
-6ab5620	51200          	0.000000e+00   	6.087710e+01   	1.044897e+01   	6.087710e+02   	3.815202e+04   	10
+a1187f60	7372800        	0.000000e+00   	6.879795e+02   	4.496460e+01   	4.189795e+05   	2.894806e+08   	609
+50116ceb	16588800       	0.000000e+00   	1.978866e+03   	1.664848e+02   	5.065897e+05   	1.009569e+09   	256
+ae9b1fd5	29491200       	0.000000e+00   	3.928459e+03   	3.071670e+02   	1.312105e+06   	5.186065e+09   	334
 
 ####################
 # COMB_3
@@ -146,11 +146,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	3.795352e+03   	3.099710e+02   	1.335964e+06   	5.104273e+09   	352
-50116ceb	16588800       	0.000000e+00   	1.949808e+03   	1.585039e+02   	4.952512e+05   	9.720259e+08   	254
-a1187f60	7372800        	0.000000e+00   	6.738891e+02   	5.051417e+01   	2.459695e+05   	1.666876e+08   	365
+06ab5620	51200          	0.000000e+00   	5.816600e+01   	9.053481e+00   	1.105154e+03   	6.583973e+04   	19
 34b59a6f	1548800        	0.000000e+00   	1.249379e+02   	2.159779e+01   	3.198410e+04   	4.115441e+06   	256
-6ab5620	51200          	0.000000e+00   	5.816600e+01   	9.053481e+00   	1.105154e+03   	6.583973e+04   	19
+a1187f60	7372800        	0.000000e+00   	6.738891e+02   	5.051417e+01   	2.459695e+05   	1.666876e+08   	365
+50116ceb	16588800       	0.000000e+00   	1.949808e+03   	1.585039e+02   	4.952512e+05   	9.720259e+08   	254
+ae9b1fd5	29491200       	0.000000e+00   	3.795352e+03   	3.099710e+02   	1.335964e+06   	5.104273e+09   	352
 
 ####################
 # COMB_4
@@ -182,9 +182,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	3.938373e+03   	2.754392e+02   	1.606856e+06   	6.359353e+09   	408
-50116ceb	16588800       	0.000000e+00   	1.981274e+03   	1.832435e+02   	4.913559e+05   	9.818378e+08   	248
-a1187f60	7372800        	0.000000e+00   	6.796234e+02   	6.194853e+01   	2.113629e+05   	1.448407e+08   	311
+06ab5620	51200          	0.000000e+00   	6.400964e+01   	1.458943e+01   	8.961350e+02   	6.034120e+04   	14
 34b59a6f	1548800        	0.000000e+00   	1.301442e+02   	2.060864e+01   	2.915229e+04   	3.889137e+06   	224
-6ab5620	51200          	0.000000e+00   	6.400964e+01   	1.458943e+01   	8.961350e+02   	6.034120e+04   	14
+a1187f60	7372800        	0.000000e+00   	6.796234e+02   	6.194853e+01   	2.113629e+05   	1.448407e+08   	311
+50116ceb	16588800       	0.000000e+00   	1.981274e+03   	1.832435e+02   	4.913559e+05   	9.818378e+08   	248
+ae9b1fd5	29491200       	0.000000e+00   	3.938373e+03   	2.754392e+02   	1.606856e+06   	6.359353e+09   	408
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/strmm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/strmm.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..cd63e6f59a5706abb01b8643137272de9e414c37
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/strmm.sirocco
@@ -0,0 +1,104 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+3
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	7372800        	0.000000e+00   	1.759037e+04   	3.255439e+03   	4.012362e+07   	7.299630e+11   	2281
+
+####################
+# COMB_0
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+1
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cuda0_impl0 (Comb0)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	7372800        	0.000000e+00   	1.233237e+03   	5.277861e+01   	2.318485e+05   	2.864478e+08   	188
+
+####################
+# COMB_1
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+1
+####################
+# DEV_0
+# device id 
+1
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cuda1_impl0 (Comb1)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+a1187f60	7372800        	0.000000e+00   	1.210116e+03   	5.077157e+01   	2.964784e+05   	3.594048e+08   	245
+
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/strsm.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/strsm.sirocco
index 1a5783eb39d324db8c1dd064b4394eeaf71a51dd..36a65251bb39d6db379a3fc7a88b7dfc52325964 100644
--- a/simucore/perfmodels/.starpu/sampling/codelets/45/strsm.sirocco
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/strsm.sirocco
@@ -7,7 +7,7 @@
 # number of combinations
 5
 ####################
-# COMB_0
+# COMB_2
 # number of types devices
 1
 ####################
@@ -26,7 +26,7 @@
 # number of implementations
 1
 #####
-# Model for cpu0_impl0 (Comb0)
+# Model for cpu0_impl0 (Comb2)
 # number of entries
 7
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -36,13 +36,13 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.262354e+05   	2.290170e+04   	3.312416e+08   	4.319067e+13   	2624
-50116ceb	16588800       	0.000000e+00   	5.337615e+04   	8.326371e+03   	7.563401e+07   	4.135291e+12   	1417
-a1187f60	7372800        	0.000000e+00   	1.770446e+04   	3.146495e+03   	6.559501e+07   	1.198005e+12   	3705
-34b59a6f	1548800        	0.000000e+00   	1.942615e+03   	3.132030e+02   	9.050645e+06   	1.803895e+10   	4659
-6ab5620	51200          	0.000000e+00   	3.124193e+01   	7.098676e+00   	1.885451e+05   	6.194624e+06   	6035
-22f3afbe	460800         	0.000000e+00   	1.461281e+02   	1.995835e+01   	5.114484e+03   	7.613117e+05   	35
 72838077	819200         	0.000000e+00   	2.006172e+03   	3.121162e+02   	1.263888e+05   	2.596950e+08   	63
+22f3afbe	460800         	0.000000e+00   	1.461281e+02   	1.995835e+01   	5.114484e+03   	7.613117e+05   	35
+06ab5620	51200          	0.000000e+00   	3.124193e+01   	7.098676e+00   	1.885451e+05   	6.194624e+06   	6035
+34b59a6f	1548800        	0.000000e+00   	1.942615e+03   	3.132030e+02   	9.050645e+06   	1.803895e+10   	4659
+a1187f60	7372800        	0.000000e+00   	1.891806e+04   	3.953160e+03   	1.392937e+08   	2.750232e+12   	7363
+50116ceb	16588800       	0.000000e+00   	5.337615e+04   	8.326371e+03   	7.563401e+07   	4.135291e+12   	1417
+ae9b1fd5	29491200       	0.000000e+00   	1.262354e+05   	2.290170e+04   	3.312416e+08   	4.319067e+13   	2624
 
 ####################
 # COMB_4
@@ -74,14 +74,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.305248e+04   	1.334385e+03   	5.207939e+06   	6.868697e+10   	399
-50116ceb	16588800       	0.000000e+00   	6.227569e+03   	8.472811e+02   	1.955457e+06   	1.240316e+10   	314
-a1187f60	7372800        	0.000000e+00   	2.363204e+03   	3.410126e+02   	1.072895e+06   	2.588265e+09   	454
+06ab5620	51200          	0.000000e+00   	1.189339e+02   	2.173609e+01   	2.497612e+03   	3.069724e+05   	21
 34b59a6f	1548800        	0.000000e+00   	9.588087e+02   	1.079624e+02   	1.716268e+05   	1.666436e+08   	179
-6ab5620	51200          	0.000000e+00   	1.189339e+02   	2.173609e+01   	2.497612e+03   	3.069724e+05   	21
+a1187f60	7372800        	0.000000e+00   	2.363204e+03   	3.410126e+02   	1.072895e+06   	2.588265e+09   	454
+50116ceb	16588800       	0.000000e+00   	6.227569e+03   	8.472811e+02   	1.955457e+06   	1.240316e+10   	314
+ae9b1fd5	29491200       	0.000000e+00   	1.305248e+04   	1.334385e+03   	5.207939e+06   	6.868697e+10   	399
 
 ####################
-# COMB_2
+# COMB_1
 # number of types devices
 1
 ####################
@@ -100,7 +100,7 @@ a1187f60	7372800        	0.000000e+00   	2.363204e+03   	3.410126e+02   	1.07289
 # number of implementations
 1
 #####
-# Model for cuda1_impl0 (Comb2)
+# Model for cuda1_impl0 (Comb1)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -110,11 +110,11 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.285236e+04   	1.196289e+03   	4.961010e+06   	6.431309e+10   	386
-50116ceb	16588800       	0.000000e+00   	5.951177e+03   	5.675201e+02   	1.690134e+06   	1.014976e+10   	284
-a1187f60	7372800        	0.000000e+00   	2.336819e+03   	2.871770e+02   	9.136963e+05   	2.167389e+09   	391
+06ab5620	51200          	0.000000e+00   	6.696491e+01   	1.309227e+01   	2.209842e+03   	1.536383e+05   	33
 34b59a6f	1548800        	0.000000e+00   	9.794784e+02   	1.067792e+02   	1.557371e+05   	1.543540e+08   	159
-6ab5620	51200          	0.000000e+00   	6.696491e+01   	1.309227e+01   	2.209842e+03   	1.536383e+05   	33
+a1187f60	7372800        	0.000000e+00   	1.946299e+03   	2.988993e+02   	3.044012e+06   	6.064287e+09   	1564
+50116ceb	16588800       	0.000000e+00   	5.951177e+03   	5.675201e+02   	1.690134e+06   	1.014976e+10   	284
+ae9b1fd5	29491200       	0.000000e+00   	1.285236e+04   	1.196289e+03   	4.961010e+06   	6.431309e+10   	386
 
 ####################
 # COMB_3
@@ -146,14 +146,14 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.284788e+04   	1.232936e+03   	6.231224e+06   	8.079530e+10   	485
-50116ceb	16588800       	0.000000e+00   	5.870740e+03   	6.354548e+02   	1.943215e+06   	1.154177e+10   	331
-a1187f60	7372800        	0.000000e+00   	2.366672e+03   	3.276943e+02   	8.401685e+05   	2.026524e+09   	355
+06ab5620	51200          	0.000000e+00   	1.527756e+02   	3.246283e+01   	2.597185e+03   	4.147017e+05   	17
 34b59a6f	1548800        	0.000000e+00   	9.462385e+02   	1.249538e+02   	1.750541e+05   	1.685314e+08   	185
-6ab5620	51200          	0.000000e+00   	1.527756e+02   	3.246283e+01   	2.597185e+03   	4.147017e+05   	17
+a1187f60	7372800        	0.000000e+00   	2.366672e+03   	3.276943e+02   	8.401685e+05   	2.026524e+09   	355
+50116ceb	16588800       	0.000000e+00   	5.870740e+03   	6.354548e+02   	1.943215e+06   	1.154177e+10   	331
+ae9b1fd5	29491200       	0.000000e+00   	1.284788e+04   	1.232936e+03   	6.231224e+06   	8.079530e+10   	485
 
 ####################
-# COMB_1
+# COMB_0
 # number of types devices
 1
 ####################
@@ -172,7 +172,7 @@ a1187f60	7372800        	0.000000e+00   	2.366672e+03   	3.276943e+02   	8.40168
 # number of implementations
 1
 #####
-# Model for cuda0_impl0 (Comb1)
+# Model for cuda0_impl0 (Comb0)
 # number of entries
 5
 # sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
@@ -182,9 +182,9 @@ nan            	nan            	nan
 # not multiple-regression-base
 0
 # hash		size		flops		mean (us)	dev (us)	sum		sum2		n
-ae9b1fd5	29491200       	0.000000e+00   	1.272736e+04   	1.188134e+03   	5.409128e+06   	6.944388e+10   	425
-50116ceb	16588800       	0.000000e+00   	5.985624e+03   	7.297118e+02   	1.675975e+06   	1.018085e+10   	280
-a1187f60	7372800        	0.000000e+00   	2.310110e+03   	2.968759e+02   	1.016448e+06   	2.386886e+09   	440
+06ab5620	51200          	0.000000e+00   	1.183823e+02   	2.064199e+01   	1.775735e+03   	2.166070e+05   	15
 34b59a6f	1548800        	0.000000e+00   	9.767572e+02   	1.265878e+02   	1.670255e+05   	1.658835e+08   	171
-6ab5620	51200          	0.000000e+00   	1.183823e+02   	2.064199e+01   	1.775735e+03   	2.166070e+05   	15
+a1187f60	7372800        	0.000000e+00   	1.974544e+03   	2.968629e+02   	3.293539e+06   	6.650235e+09   	1668
+50116ceb	16588800       	0.000000e+00   	5.985624e+03   	7.297118e+02   	1.675975e+06   	1.018085e+10   	280
+ae9b1fd5	29491200       	0.000000e+00   	1.272736e+04   	1.188134e+03   	5.409128e+06   	6.944388e+10   	425
 
diff --git a/simucore/perfmodels/.starpu/sampling/codelets/45/strtri.sirocco b/simucore/perfmodels/.starpu/sampling/codelets/45/strtri.sirocco
new file mode 100644
index 0000000000000000000000000000000000000000..e7d9c50b49fd086e454feea6680b4f1da106ba0f
--- /dev/null
+++ b/simucore/perfmodels/.starpu/sampling/codelets/45/strtri.sirocco
@@ -0,0 +1,40 @@
+##################
+# Performance Model Version
+45
+
+####################
+# COMBs
+# number of combinations
+1
+####################
+# COMB_2
+# number of types devices
+1
+####################
+# DEV_0
+# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, MPI_MS - 5)
+0
+####################
+# DEV_0
+# device id 
+0
+####################
+# DEV_0
+# number of cores 
+1
+##########
+# number of implementations
+1
+#####
+# Model for cpu0_impl0 (Comb2)
+# number of entries
+1
+# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx
+0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              
+# a		b		c
+nan            	nan            	nan            
+# not multiple-regression-base
+0
+# hash		size		flops		mean (us)	dev (us)	sum		sum2		n
+901ddf46	3686400        	0.000000e+00   	1.206892e+04   	2.330425e+03   	2.896541e+06   	3.626154e+10   	240
+