diff --git a/testing/testing_zgemm.c b/testing/testing_zgemm.c
index 14d42ea824bc4cb185432cc33f011c6169a1a600..a5279098aae532f7924cc9536d916da7419231ed 100644
--- a/testing/testing_zgemm.c
+++ b/testing/testing_zgemm.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zgemm.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> c d s
  *
  */
@@ -130,6 +131,88 @@ testing_zgemm_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zgemm_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int          nb     = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t transA = run_arg_get_trans( args, "transA", ChamNoTrans );
+    cham_trans_t transB = run_arg_get_trans( args, "transB", ChamNoTrans );
+    int          N      = run_arg_get_int( args, "N", 1000 );
+    int          M      = run_arg_get_int( args, "M", N );
+    int          K      = run_arg_get_int( args, "K", N );
+    int          LDA    = run_arg_get_int( args, "LDA", ( ( transA == ChamNoTrans ) ? M : K ) );
+    int          LDB    = run_arg_get_int( args, "LDB", ( ( transB == ChamNoTrans ) ? K : N ) );
+    int          LDC    = run_arg_get_int( args, "LDC", M );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    CHAMELEON_Complex64_t beta  = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+
+    /* Descriptors */
+    int                    Am, An, Bm, Bn;
+    CHAMELEON_Complex64_t *A, *B, *C, *Cinit;
+
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_complex64( args, "beta", beta );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculate the dimensions according to the transposition */
+    if ( transA == ChamNoTrans ) {
+        Am = M;
+        An = K;
+    }
+    else {
+        Am = K;
+        An = M;
+    }
+    if ( transB == ChamNoTrans ) {
+        Bm = K;
+        Bn = N;
+    }
+    else {
+        Bm = N;
+        Bn = K;
+    }
+
+    /* Create the matrices */
+    A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fill the matrices with random values */
+    CHAMELEON_zplrnt( Am, An, A, LDA, seedA );
+    CHAMELEON_zplrnt( Bm, Bn, B, LDB, seedB );
+    CHAMELEON_zplrnt( M, N, C, LDC, seedC );
+
+    /* Calculate the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zgemm( transA, transB, M, N, K, alpha, A, LDA, B, LDB, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zgemm( M, N, K ) );
+
+    /* Check the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC );
+
+        // hres += check_zgemm( args, transA, transB, alpha, descA, descB, beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( B );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zgemm;
 const char *zgemm_params[] = { "mtxfmt", "nb",    "transA", "transB", "m",     "n",
                                "k",      "lda",   "ldb",    "ldc",    "alpha", "beta",
@@ -150,7 +233,7 @@ testing_zgemm_init( void )
     test_zgemm.output = zgemm_output;
     test_zgemm.outchk = zgemm_outchk;
     test_zgemm.fptr_desc = testing_zgemm_desc;
-    test_zgemm.fptr_std  = NULL;
+    test_zgemm.fptr_std  = testing_zgemm_std;
     test_zgemm.next   = NULL;
 
     testing_register( &test_zgemm );
diff --git a/testing/testing_zhemm.c b/testing/testing_zhemm.c
index 0d01232b2644f541617502982593d8f0deb93219..9fc0006429ccc736f71de8b0d27cb726a76d014d 100644
--- a/testing/testing_zhemm.c
+++ b/testing/testing_zhemm.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zhemm.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> c
  *
  */
@@ -113,6 +114,80 @@ testing_zhemm_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zhemm_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_side_t           side  = run_arg_get_side( args, "side", ChamLeft );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   M     = run_arg_get_int( args, "M", N );
+    int                   LDA   = run_arg_get_int( args, "LDA", ( ( side == ChamLeft ) ? M : N ) );
+    int                   LDB   = run_arg_get_int( args, "LDB", M );
+    int                   LDC   = run_arg_get_int( args, "LDC", M );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    CHAMELEON_Complex64_t beta  = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+    double                bump  = testing_dalea();
+
+    /* Descriptors */
+    int                    Am;
+    CHAMELEON_Complex64_t *A, *B, *C, *Cinit;
+
+    bump  = run_arg_get_double( args, "bump", bump );
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_complex64( args, "beta", beta );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculate the dimensions according to the side */
+    if ( side == ChamLeft ) {
+        Am = M;
+    }
+    else {
+        Am = N;
+    }
+
+    /* Create the matrices */
+    A = malloc( LDA*Am*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    CHAMELEON_zplghe( bump, uplo, N, A, LDA, seedA );
+    CHAMELEON_zplrnt( M, N, B, LDB, seedB );
+    CHAMELEON_zplrnt( M, N, C, LDC, seedC );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zhemm( side, uplo, M, N, alpha, A, LDA, B, LDB, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zhemm( side, M, N ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC );
+
+        // hres += check_zsymm( args, ChamHermitian, side, uplo, alpha, descA, descB,
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( B );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zhemm;
 const char *zhemm_params[] = { "mtxfmt", "nb",    "side", "uplo",  "m",     "n",     "lda",  "ldb",
                                "ldc",    "alpha", "beta", "seedA", "seedB", "seedC", "bump", NULL };
@@ -132,7 +207,7 @@ testing_zhemm_init( void )
     test_zhemm.output = zhemm_output;
     test_zhemm.outchk = zhemm_outchk;
     test_zhemm.fptr_desc = testing_zhemm_desc;
-    test_zhemm.fptr_std  = NULL;
+    test_zhemm.fptr_std  = testing_zhemm_std;
     test_zhemm.next   = NULL;
 
     testing_register( &test_zhemm );
diff --git a/testing/testing_zher2k.c b/testing/testing_zher2k.c
index c6f37eeea53f0751a47c4ce7b61e33d5f42b9281..1507b35e719c4c394215aaee6c362046d37158fd 100644
--- a/testing/testing_zher2k.c
+++ b/testing/testing_zher2k.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zher2k.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> z c
  *
  */
@@ -102,8 +103,8 @@ testing_zher2k_desc( run_arg_list_t *args, int check )
             &descCinit, (void*)(-mtxfmt), ChamComplexDouble, nb, nb, nb * nb, LDC, N, 0, 0, N, N, P, Q );
         CHAMELEON_zplghe_Tile( bump, uplo, descCinit, seedC );
 
-        hres +=
-            check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB, beta, descCinit, descC );
+        hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB,
+                             beta, descCinit, descC );
 
         CHAMELEON_Desc_Destroy( &descCinit );
     }
@@ -115,6 +116,82 @@ testing_zher2k_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zher2k_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t          trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   K     = run_arg_get_int( args, "K", N );
+    int                   LDA   = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int                   LDB   = run_arg_get_int( args, "LDB", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int                   LDC   = run_arg_get_int( args, "LDC", N );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    double                beta  = testing_dalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+    double                bump  = testing_dalea();
+
+    /* Descriptors */
+    int                    Am, An;
+    CHAMELEON_Complex64_t *A, *B, *C, *Cinit;
+
+    bump  = run_arg_get_double( args, "bump", bump );
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_double( args, "beta", beta );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculate the dimensions according to the transposition */
+    if ( trans == ChamNoTrans ) {
+        Am = N;
+        An = K;
+    }
+    else {
+        Am = K;
+        An = N;
+    }
+
+    /* Create the matrices */
+    A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*An*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fill the matrix with random values */
+    CHAMELEON_zplrnt( Am, An, B, LDA, seedA );
+    CHAMELEON_zplrnt( K, An, B, LDB, seedB );
+    CHAMELEON_zplghe( bump, uplo, N, C, LDC, seedC );
+
+    /* Calculate the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zher2k( uplo, trans, N, K, alpha, A, LDA, B, LDB, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zher2k( K, N ) );
+
+    /* Check the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplghe( bump, uplo, N, Cinit, LDC, seedC );
+
+        // hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB,
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( B );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zher2k;
 const char *zher2k_params[] = { "mtxfmt", "nb",    "trans", "uplo",  "n",    "k",
                                 "lda",    "ldb",   "ldc",   "alpha", "beta", "seedA",
@@ -135,7 +212,7 @@ testing_zher2k_init( void )
     test_zher2k.output = zher2k_output;
     test_zher2k.outchk = zher2k_outchk;
     test_zher2k.fptr_desc = testing_zher2k_desc;
-    test_zher2k.fptr_std  = NULL;
+    test_zher2k.fptr_std  = testing_zher2k_std;
     test_zher2k.next   = NULL;
 
     testing_register( &test_zher2k );
diff --git a/testing/testing_zherk.c b/testing/testing_zherk.c
index 05e3f349b00e065415c31ac350489222e6f4f80b..3f6a02f32af8b7e1b70b66d2c5b4fd90ae194ef2 100644
--- a/testing/testing_zherk.c
+++ b/testing/testing_zherk.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zherk.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,12 +13,12 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> z c
  *
  */
 #include <chameleon.h>
-#include <chameleon/flops.h>
 #include "testings.h"
 #include "testing_zcheck.h"
 #include <chameleon/flops.h>
@@ -109,6 +109,78 @@ testing_zherk_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zherk_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int          nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_uplo_t  uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int          N     = run_arg_get_int( args, "N", 1000 );
+    int          K     = run_arg_get_int( args, "K", N );
+    int          LDA   = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int          LDC   = run_arg_get_int( args, "LDC", N );
+    double       alpha = testing_dalea();
+    double       beta  = testing_dalea();
+    double       bump  = testing_dalea();
+    int          seedA = run_arg_get_int( args, "seedA", random() );
+    int          seedC = run_arg_get_int( args, "seedC", random() );
+
+
+    /* Descriptors */
+    int                    Am, An;
+    CHAMELEON_Complex64_t *A, *C, *Cinit;
+
+    alpha = run_arg_get_double( args, "alpha", alpha );
+    beta  = run_arg_get_double( args, "beta", beta );
+    bump  = run_arg_get_double( args, "bump", bump );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculates the dimensions according to the transposition */
+    if ( trans == ChamNoTrans ) {
+        Am = N;
+        An = K;
+    }
+    else {
+        Am = K;
+        An = N;
+    }
+
+    /* Creates the matrices */
+    A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    CHAMELEON_zplrnt( Am, An, A, LDA, seedA );
+    CHAMELEON_zplghe( bump, uplo, N, C, LDC, seedC );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zherk( uplo, trans, N, K, alpha, A, LDA, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zherk( K, N ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplghe( bump, uplo, N, Cinit, LDC, seedC );
+
+        // hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, NULL,
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zherk;
 const char *zherk_params[] = { "mtxfmt", "nb",    "trans", "uplo",  "n",     "k",    "lda",
                                "ldc",    "alpha", "beta",  "seedA", "seedC", "bump", NULL };
diff --git a/testing/testing_zsymm.c b/testing/testing_zsymm.c
index aa24d2d680eb1a7a0966dee44b83c7447b24add7..a8d8bf0c0a9668f62cda2de9c27fabe660a59da5 100644
--- a/testing/testing_zsymm.c
+++ b/testing/testing_zsymm.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zsymm.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> c d s
  *
  */
@@ -113,6 +114,80 @@ testing_zsymm_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zsymm_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_side_t           side  = run_arg_get_side( args, "side", ChamLeft );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   M     = run_arg_get_int( args, "M", N );
+    int                   LDA   = run_arg_get_int( args, "LDA", ( ( side == ChamLeft ) ? M : N ) );
+    int                   LDB   = run_arg_get_int( args, "LDB", M );
+    int                   LDC   = run_arg_get_int( args, "LDC", M );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    CHAMELEON_Complex64_t beta  = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+    double                bump  = testing_dalea();
+
+    /* Descriptors */
+    int                    Am;
+    CHAMELEON_Complex64_t *A, *B, *C, *Cinit;
+
+    bump  = run_arg_get_double( args, "bump", bump );
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_complex64( args, "beta", beta );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculate the dimensions according to the side */
+    if ( side == ChamLeft ) {
+        Am = M;
+    }
+    else {
+        Am = N;
+    }
+
+    /* Create the matrices */
+    A = malloc( LDA*Am*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    CHAMELEON_zplgsy( bump, uplo, N, A, LDA, seedA );
+    CHAMELEON_zplrnt( M, N, B, LDB, seedB );
+    CHAMELEON_zplrnt( M, N, C, LDC, seedC );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zsymm( side, uplo, Am, N, alpha, A, LDA, B, LDB, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zsymm( side, M, N ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC );
+
+        // hres += check_zsymm( args, ChamSymmetric, side, uplo, alpha, descA, descB, 
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( B );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zsymm;
 const char *zsymm_params[] = { "mtxfmt", "nb",    "side", "uplo",  "m",     "n",     "lda",  "ldb",
                                "ldc",    "alpha", "beta", "seedA", "seedB", "seedC", "bump", NULL };
@@ -132,7 +207,7 @@ testing_zsymm_init( void )
     test_zsymm.output = zsymm_output;
     test_zsymm.outchk = zsymm_outchk;
     test_zsymm.fptr_desc = testing_zsymm_desc;
-    test_zsymm.fptr_std  = NULL;
+    test_zsymm.fptr_std  = testing_zsymm_std;
     test_zsymm.next   = NULL;
 
     testing_register( &test_zsymm );
diff --git a/testing/testing_zsyr2k.c b/testing/testing_zsyr2k.c
index e2c57b26f65242725b17946e02ab36ebf4f8eca7..49f2047908ca69f0f748fa760cb04d7d04e821c2 100644
--- a/testing/testing_zsyr2k.c
+++ b/testing/testing_zsyr2k.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zsyr2k.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> z c d s
  *
  */
@@ -115,6 +116,82 @@ testing_zsyr2k_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zsyr2k_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t          trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   K     = run_arg_get_int( args, "K", N );
+    int                   LDA   = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int                   LDB   = run_arg_get_int( args, "LDB", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int                   LDC   = run_arg_get_int( args, "LDC", N );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    CHAMELEON_Complex64_t beta  = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+    double                bump  = testing_dalea();
+
+    /* Descriptors */
+    int                    Am, An;
+    CHAMELEON_Complex64_t *A, *B, *C, *Cinit;
+
+    bump  = run_arg_get_double( args, "bump", bump );
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_complex64( args, "beta", beta );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculate the dimensions according to the transposition */
+    if ( trans == ChamNoTrans ) {
+        Am = N;
+        An = K;
+    }
+    else {
+        Am = K;
+        An = N;
+    }
+
+    /* Create the matrices */
+    A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*An*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fill the matrix with random values */
+    CHAMELEON_zplrnt( Am, An, A, LDA, seedA );
+    CHAMELEON_zplrnt( Am, An, B, LDB, seedB );
+    CHAMELEON_zplgsy( bump, uplo, N, C, LDC, seedC );
+
+    /* Calculate the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zsyr2k( uplo, trans, N, K, alpha, A, LDA, B, LDB, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zher2k( K, N ) );
+
+    /* Check the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplgsy( bump, uplo, N, Cinit, LDC, seedC );
+
+        // hres += check_zsyrk( args, ChamSymmetric, uplo, trans, alpha, descA, descB,
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( B );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zsyr2k;
 const char *zsyr2k_params[] = { "mtxfmt", "nb",    "trans", "uplo",  "n",    "k",
                                 "lda",    "ldb",   "ldc",   "alpha", "beta", "seedA",
@@ -135,7 +212,7 @@ testing_zsyr2k_init( void )
     test_zsyr2k.output = zsyr2k_output;
     test_zsyr2k.outchk = zsyr2k_outchk;
     test_zsyr2k.fptr_desc = testing_zsyr2k_desc;
-    test_zsyr2k.fptr_std  = NULL;
+    test_zsyr2k.fptr_std  = testing_zsyr2k_std;
     test_zsyr2k.next   = NULL;
 
     testing_register( &test_zsyr2k );
diff --git a/testing/testing_zsyrk.c b/testing/testing_zsyrk.c
index dd70eed1425ee1e1b7dc18769de3065e64674c69..164d8ff5fed4aab73a3ddb7cba6c05a2cb5894e3 100644
--- a/testing/testing_zsyrk.c
+++ b/testing/testing_zsyrk.c
@@ -2,7 +2,7 @@
  *
  * @file testing_zsyrk.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> z c d s
  *
  */
@@ -108,6 +109,77 @@ testing_zsyrk_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_zsyrk_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int          nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_uplo_t  uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    int          N     = run_arg_get_int( args, "N", 1000 );
+    int          K     = run_arg_get_int( args, "K", N );
+    int          LDA   = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) );
+    int          LDC   = run_arg_get_int( args, "LDC", N );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    CHAMELEON_Complex64_t beta  = testing_zalea();
+    CHAMELEON_Complex64_t bump  = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedC = run_arg_get_int( args, "seedC", random() );
+
+    /* Descriptors */
+    int                    Am, An;
+    CHAMELEON_Complex64_t *A, *C, *Cinit;
+
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+    beta  = run_arg_get_complex64( args, "beta", beta );
+    bump  = run_arg_get_complex64( args, "bump", bump );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculates the dimensions according to the transposition */
+    if ( trans == ChamNoTrans ) {
+        Am = N;
+        An = K;
+    }
+    else {
+        Am = K;
+        An = N;
+    }
+
+    /* Creates the matrices */
+    A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) );
+    C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    CHAMELEON_zplrnt( Am, An, A, LDA, seedA );
+    CHAMELEON_zplgsy( bump, uplo, N, C, LDC, seedC );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_zsyrk( uplo, trans, N, K, alpha, A, LDA, beta, C, LDC );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_zsyrk( K, N ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplgsy( bump, uplo, N, Cinit, LDC, seedC );
+
+        // hres += check_zsyrk( args, ChamSymmetric, uplo, trans, alpha, descA, NULL,
+        //                      beta, descCinit, descC );
+
+        free( Cinit );
+    }
+
+    free( A );
+    free( C );
+
+    return hres;
+}
+
 testing_t   test_zsyrk;
 const char *zsyrk_params[] = { "mtxfmt", "nb",    "trans", "uplo",  "n",     "k",    "lda",
                                "ldc",    "alpha", "beta",  "seedA", "seedC", "bump", NULL };
@@ -127,7 +199,7 @@ testing_zsyrk_init( void )
     test_zsyrk.output = zsyrk_output;
     test_zsyrk.outchk = zsyrk_outchk;
     test_zsyrk.fptr_desc = testing_zsyrk_desc;
-    test_zsyrk.fptr_std  = NULL;
+    test_zsyrk.fptr_std  = testing_zsyrk_std;
     test_zsyrk.next   = NULL;
 
     testing_register( &test_zsyrk );
diff --git a/testing/testing_ztrmm.c b/testing/testing_ztrmm.c
index 16cd4e1e8d0aa345075789c7d62364fbb95b5f8b..dced32a2e51699cbea23e26bbaae0455835279ea 100644
--- a/testing/testing_ztrmm.c
+++ b/testing/testing_ztrmm.c
@@ -2,7 +2,7 @@
  *
  * @file testing_ztrmm.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> c d s
  *
  */
@@ -106,6 +107,75 @@ testing_ztrmm_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_ztrmm_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t          trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_side_t           side  = run_arg_get_side( args, "side", ChamLeft );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    cham_diag_t           diag  = run_arg_get_diag( args, "diag", ChamNonUnit );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   K     = run_arg_get_int( args, "K", N );
+    int                   LDA   = run_arg_get_int( args, "LDA", N );
+    int                   LDB   = run_arg_get_int( args, "LDB", N );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+
+    /* Descriptors */
+    int                    Bm, Bn;
+    CHAMELEON_Complex64_t *A, *B, *Binit;
+
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Calculates the dimensions according to the side */
+    if ( side == ChamLeft ) {
+        Bm = N;
+        Bn = K;
+    }
+    else {
+        Bm = K;
+        Bn = N;
+    }
+
+    /* Creates the matrices */
+    A = malloc( LDA*N*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    CHAMELEON_zplrnt( K, N, A, LDA, seedA );
+    CHAMELEON_zplrnt( Bm, Bn, B, LDB, seedB );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_ztrmm( side, uplo, trans, diag, N, K, alpha, A, LDA, B, LDB );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_ztrmm( side, N, K ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Binit = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) );
+    CHAMELEON_zplrnt( Bm, Bn, Binit, LDB, seedB );
+
+        // hres += check_ztrmm( args, CHECK_TRMM, side, uplo, trans, diag,
+        //                      alpha, descA, descB, descBinit );
+
+        free( Binit );
+    }
+
+    free( A );
+    free( B );
+
+    return hres;
+}
+
 testing_t   test_ztrmm;
 const char *ztrmm_params[] = { "mtxfmt", "nb",  "trans", "side",  "uplo",  "diag",  "n",
                                "k",      "lda", "ldb",   "alpha", "seedA", "seedB", NULL };
@@ -125,7 +195,7 @@ testing_ztrmm_init( void )
     test_ztrmm.output = ztrmm_output;
     test_ztrmm.outchk = ztrmm_outchk;
     test_ztrmm.fptr_desc = testing_ztrmm_desc;
-    test_ztrmm.fptr_std  = NULL;
+    test_ztrmm.fptr_std  = testing_ztrmm_std;
     test_ztrmm.next   = NULL;
 
     testing_register( &test_ztrmm );
diff --git a/testing/testing_ztrsm.c b/testing/testing_ztrsm.c
index 8ce17649194f3f1714be00136f42262881de2546..851df92b88960469fbcf3515ecbdd73f2b2ee037 100644
--- a/testing/testing_ztrsm.c
+++ b/testing/testing_ztrsm.c
@@ -2,7 +2,7 @@
  *
  * @file testing_ztrsm.c
  *
- * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
+ * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
  *                      Univ. Bordeaux. All rights reserved.
  *
  ***
@@ -13,7 +13,8 @@
  * @author Lucas Barros de Assis
  * @author Florent Pruvost
  * @author Mathieu Faverge
- * @date 2020-11-19
+ * @author Alycia Lisito
+ * @date 2022-02-04
  * @precisions normal z -> c d s
  *
  */
@@ -97,6 +98,66 @@ testing_ztrsm_desc( run_arg_list_t *args, int check )
     return hres;
 }
 
+int
+testing_ztrsm_std( run_arg_list_t *args, int check )
+{
+    testdata_t test_data = { .args = args };
+    int        hres      = 0;
+
+    /* Read arguments */
+    int                   nb    = run_arg_get_int( args, "nb", 320 );
+    cham_trans_t          trans = run_arg_get_trans( args, "trans", ChamNoTrans );
+    cham_side_t           side  = run_arg_get_side( args, "side", ChamLeft );
+    cham_uplo_t           uplo  = run_arg_get_uplo( args, "uplo", ChamUpper );
+    cham_diag_t           diag  = run_arg_get_diag( args, "diag", ChamNonUnit );
+    int                   N     = run_arg_get_int( args, "N", 1000 );
+    int                   M     = run_arg_get_int( args, "M", N );
+    int                   Ak    = ( side == ChamLeft ) ? M : N;
+    int                   LDA   = run_arg_get_int( args, "LDA", Ak );
+    int                   LDB   = run_arg_get_int( args, "LDB", M );
+    CHAMELEON_Complex64_t alpha = testing_zalea();
+    int                   seedA = run_arg_get_int( args, "seedA", random() );
+    int                   seedB = run_arg_get_int( args, "seedB", random() );
+
+    /* Descriptors */
+    CHAMELEON_Complex64_t *A, *B, *Binit;
+
+    alpha = run_arg_get_complex64( args, "alpha", alpha );
+
+    CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb );
+
+    /* Creates the matrices */
+    A = malloc( LDA*Ak*sizeof(CHAMELEON_Complex64_t) );
+    B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) );
+
+    /* Fills the matrix with random values */
+    /* We bump a little bit the diagonal to make it stable */
+    CHAMELEON_zplgsy( 2., uplo, N, A, LDA, seedA );
+    CHAMELEON_zplrnt( M, N, B, LDB, seedB );
+
+    /* Calculates the product */
+    testing_start( &test_data );
+    hres = CHAMELEON_ztrsm( side, uplo, trans, diag, N, M, alpha, A, LDA, B, LDB );
+    test_data.hres = hres;
+    testing_stop( &test_data, flops_ztrsm( side, M, N ) );
+
+    /* Checks the solution */
+    if ( check ) {
+        Binit = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) );
+        CHAMELEON_zplrnt( M, N, Binit, LDB, seedB );
+
+        // hres += check_ztrmm( args, CHECK_TRSM, side, uplo, trans, diag,
+        //                      alpha, descA, descB, descBinit );
+
+        free( Binit );
+    }
+
+    free( A );
+    free( B );
+
+    return hres;
+}
+
 testing_t   test_ztrsm;
 const char *ztrsm_params[] = { "mtxfmt", "nb",  "side", "uplo",  "trans", "diag",  "m",
                                "n",      "lda", "ldb",  "alpha", "seedA", "seedB", NULL };
@@ -116,7 +177,7 @@ testing_ztrsm_init( void )
     test_ztrsm.output = ztrsm_output;
     test_ztrsm.outchk = ztrsm_outchk;
     test_ztrsm.fptr_desc = testing_ztrsm_desc;
-    test_ztrsm.fptr_std  = NULL;
+    test_ztrsm.fptr_std  = testing_ztrsm_std;
     test_ztrsm.next   = NULL;
 
     testing_register( &test_ztrsm );