diff --git a/testing/testing_zgemm.c b/testing/testing_zgemm.c index 14d42ea824bc4cb185432cc33f011c6169a1a600..a5279098aae532f7924cc9536d916da7419231ed 100644 --- a/testing/testing_zgemm.c +++ b/testing/testing_zgemm.c @@ -2,7 +2,7 @@ * * @file testing_zgemm.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> c d s * */ @@ -130,6 +131,88 @@ testing_zgemm_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zgemm_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t transA = run_arg_get_trans( args, "transA", ChamNoTrans ); + cham_trans_t transB = run_arg_get_trans( args, "transB", ChamNoTrans ); + int N = run_arg_get_int( args, "N", 1000 ); + int M = run_arg_get_int( args, "M", N ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( transA == ChamNoTrans ) ? M : K ) ); + int LDB = run_arg_get_int( args, "LDB", ( ( transB == ChamNoTrans ) ? K : N ) ); + int LDC = run_arg_get_int( args, "LDC", M ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + CHAMELEON_Complex64_t beta = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + + /* Descriptors */ + int Am, An, Bm, Bn; + CHAMELEON_Complex64_t *A, *B, *C, *Cinit; + + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_complex64( args, "beta", beta ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculate the dimensions according to the transposition */ + if ( transA == ChamNoTrans ) { + Am = M; + An = K; + } + else { + Am = K; + An = M; + } + if ( transB == ChamNoTrans ) { + Bm = K; + Bn = N; + } + else { + Bm = N; + Bn = K; + } + + /* Create the matrices */ + A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fill the matrices with random values */ + CHAMELEON_zplrnt( Am, An, A, LDA, seedA ); + CHAMELEON_zplrnt( Bm, Bn, B, LDB, seedB ); + CHAMELEON_zplrnt( M, N, C, LDC, seedC ); + + /* Calculate the product */ + testing_start( &test_data ); + hres = CHAMELEON_zgemm( transA, transB, M, N, K, alpha, A, LDA, B, LDB, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zgemm( M, N, K ) ); + + /* Check the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC ); + + // hres += check_zgemm( args, transA, transB, alpha, descA, descB, beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( B ); + free( C ); + + return hres; +} + testing_t test_zgemm; const char *zgemm_params[] = { "mtxfmt", "nb", "transA", "transB", "m", "n", "k", "lda", "ldb", "ldc", "alpha", "beta", @@ -150,7 +233,7 @@ testing_zgemm_init( void ) test_zgemm.output = zgemm_output; test_zgemm.outchk = zgemm_outchk; test_zgemm.fptr_desc = testing_zgemm_desc; - test_zgemm.fptr_std = NULL; + test_zgemm.fptr_std = testing_zgemm_std; test_zgemm.next = NULL; testing_register( &test_zgemm ); diff --git a/testing/testing_zhemm.c b/testing/testing_zhemm.c index 0d01232b2644f541617502982593d8f0deb93219..9fc0006429ccc736f71de8b0d27cb726a76d014d 100644 --- a/testing/testing_zhemm.c +++ b/testing/testing_zhemm.c @@ -2,7 +2,7 @@ * * @file testing_zhemm.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> c * */ @@ -113,6 +114,80 @@ testing_zhemm_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zhemm_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_side_t side = run_arg_get_side( args, "side", ChamLeft ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int M = run_arg_get_int( args, "M", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( side == ChamLeft ) ? M : N ) ); + int LDB = run_arg_get_int( args, "LDB", M ); + int LDC = run_arg_get_int( args, "LDC", M ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + CHAMELEON_Complex64_t beta = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + double bump = testing_dalea(); + + /* Descriptors */ + int Am; + CHAMELEON_Complex64_t *A, *B, *C, *Cinit; + + bump = run_arg_get_double( args, "bump", bump ); + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_complex64( args, "beta", beta ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculate the dimensions according to the side */ + if ( side == ChamLeft ) { + Am = M; + } + else { + Am = N; + } + + /* Create the matrices */ + A = malloc( LDA*Am*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + CHAMELEON_zplghe( bump, uplo, N, A, LDA, seedA ); + CHAMELEON_zplrnt( M, N, B, LDB, seedB ); + CHAMELEON_zplrnt( M, N, C, LDC, seedC ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_zhemm( side, uplo, M, N, alpha, A, LDA, B, LDB, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zhemm( side, M, N ) ); + + /* Checks the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC ); + + // hres += check_zsymm( args, ChamHermitian, side, uplo, alpha, descA, descB, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( B ); + free( C ); + + return hres; +} + testing_t test_zhemm; const char *zhemm_params[] = { "mtxfmt", "nb", "side", "uplo", "m", "n", "lda", "ldb", "ldc", "alpha", "beta", "seedA", "seedB", "seedC", "bump", NULL }; @@ -132,7 +207,7 @@ testing_zhemm_init( void ) test_zhemm.output = zhemm_output; test_zhemm.outchk = zhemm_outchk; test_zhemm.fptr_desc = testing_zhemm_desc; - test_zhemm.fptr_std = NULL; + test_zhemm.fptr_std = testing_zhemm_std; test_zhemm.next = NULL; testing_register( &test_zhemm ); diff --git a/testing/testing_zher2k.c b/testing/testing_zher2k.c index c6f37eeea53f0751a47c4ce7b61e33d5f42b9281..1507b35e719c4c394215aaee6c362046d37158fd 100644 --- a/testing/testing_zher2k.c +++ b/testing/testing_zher2k.c @@ -2,7 +2,7 @@ * * @file testing_zher2k.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> z c * */ @@ -102,8 +103,8 @@ testing_zher2k_desc( run_arg_list_t *args, int check ) &descCinit, (void*)(-mtxfmt), ChamComplexDouble, nb, nb, nb * nb, LDC, N, 0, 0, N, N, P, Q ); CHAMELEON_zplghe_Tile( bump, uplo, descCinit, seedC ); - hres += - check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB, beta, descCinit, descC ); + hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB, + beta, descCinit, descC ); CHAMELEON_Desc_Destroy( &descCinit ); } @@ -115,6 +116,82 @@ testing_zher2k_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zher2k_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDB = run_arg_get_int( args, "LDB", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDC = run_arg_get_int( args, "LDC", N ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + double beta = testing_dalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + double bump = testing_dalea(); + + /* Descriptors */ + int Am, An; + CHAMELEON_Complex64_t *A, *B, *C, *Cinit; + + bump = run_arg_get_double( args, "bump", bump ); + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_double( args, "beta", beta ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculate the dimensions according to the transposition */ + if ( trans == ChamNoTrans ) { + Am = N; + An = K; + } + else { + Am = K; + An = N; + } + + /* Create the matrices */ + A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*An*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fill the matrix with random values */ + CHAMELEON_zplrnt( Am, An, B, LDA, seedA ); + CHAMELEON_zplrnt( K, An, B, LDB, seedB ); + CHAMELEON_zplghe( bump, uplo, N, C, LDC, seedC ); + + /* Calculate the product */ + testing_start( &test_data ); + hres = CHAMELEON_zher2k( uplo, trans, N, K, alpha, A, LDA, B, LDB, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zher2k( K, N ) ); + + /* Check the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplghe( bump, uplo, N, Cinit, LDC, seedC ); + + // hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, descB, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( B ); + free( C ); + + return hres; +} + testing_t test_zher2k; const char *zher2k_params[] = { "mtxfmt", "nb", "trans", "uplo", "n", "k", "lda", "ldb", "ldc", "alpha", "beta", "seedA", @@ -135,7 +212,7 @@ testing_zher2k_init( void ) test_zher2k.output = zher2k_output; test_zher2k.outchk = zher2k_outchk; test_zher2k.fptr_desc = testing_zher2k_desc; - test_zher2k.fptr_std = NULL; + test_zher2k.fptr_std = testing_zher2k_std; test_zher2k.next = NULL; testing_register( &test_zher2k ); diff --git a/testing/testing_zherk.c b/testing/testing_zherk.c index 05e3f349b00e065415c31ac350489222e6f4f80b..3f6a02f32af8b7e1b70b66d2c5b4fd90ae194ef2 100644 --- a/testing/testing_zherk.c +++ b/testing/testing_zherk.c @@ -2,7 +2,7 @@ * * @file testing_zherk.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,12 +13,12 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> z c * */ #include <chameleon.h> -#include <chameleon/flops.h> #include "testings.h" #include "testing_zcheck.h" #include <chameleon/flops.h> @@ -109,6 +109,78 @@ testing_zherk_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zherk_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDC = run_arg_get_int( args, "LDC", N ); + double alpha = testing_dalea(); + double beta = testing_dalea(); + double bump = testing_dalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + + + /* Descriptors */ + int Am, An; + CHAMELEON_Complex64_t *A, *C, *Cinit; + + alpha = run_arg_get_double( args, "alpha", alpha ); + beta = run_arg_get_double( args, "beta", beta ); + bump = run_arg_get_double( args, "bump", bump ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculates the dimensions according to the transposition */ + if ( trans == ChamNoTrans ) { + Am = N; + An = K; + } + else { + Am = K; + An = N; + } + + /* Creates the matrices */ + A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + CHAMELEON_zplrnt( Am, An, A, LDA, seedA ); + CHAMELEON_zplghe( bump, uplo, N, C, LDC, seedC ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_zherk( uplo, trans, N, K, alpha, A, LDA, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zherk( K, N ) ); + + /* Checks the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplghe( bump, uplo, N, Cinit, LDC, seedC ); + + // hres += check_zsyrk( args, ChamHermitian, uplo, trans, alpha, descA, NULL, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( C ); + + return hres; +} + testing_t test_zherk; const char *zherk_params[] = { "mtxfmt", "nb", "trans", "uplo", "n", "k", "lda", "ldc", "alpha", "beta", "seedA", "seedC", "bump", NULL }; diff --git a/testing/testing_zsymm.c b/testing/testing_zsymm.c index aa24d2d680eb1a7a0966dee44b83c7447b24add7..a8d8bf0c0a9668f62cda2de9c27fabe660a59da5 100644 --- a/testing/testing_zsymm.c +++ b/testing/testing_zsymm.c @@ -2,7 +2,7 @@ * * @file testing_zsymm.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> c d s * */ @@ -113,6 +114,80 @@ testing_zsymm_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zsymm_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_side_t side = run_arg_get_side( args, "side", ChamLeft ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int M = run_arg_get_int( args, "M", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( side == ChamLeft ) ? M : N ) ); + int LDB = run_arg_get_int( args, "LDB", M ); + int LDC = run_arg_get_int( args, "LDC", M ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + CHAMELEON_Complex64_t beta = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + double bump = testing_dalea(); + + /* Descriptors */ + int Am; + CHAMELEON_Complex64_t *A, *B, *C, *Cinit; + + bump = run_arg_get_double( args, "bump", bump ); + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_complex64( args, "beta", beta ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculate the dimensions according to the side */ + if ( side == ChamLeft ) { + Am = M; + } + else { + Am = N; + } + + /* Create the matrices */ + A = malloc( LDA*Am*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + CHAMELEON_zplgsy( bump, uplo, N, A, LDA, seedA ); + CHAMELEON_zplrnt( M, N, B, LDB, seedB ); + CHAMELEON_zplrnt( M, N, C, LDC, seedC ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_zsymm( side, uplo, Am, N, alpha, A, LDA, B, LDB, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zsymm( side, M, N ) ); + + /* Checks the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplrnt( M, N, Cinit, LDC, seedC ); + + // hres += check_zsymm( args, ChamSymmetric, side, uplo, alpha, descA, descB, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( B ); + free( C ); + + return hres; +} + testing_t test_zsymm; const char *zsymm_params[] = { "mtxfmt", "nb", "side", "uplo", "m", "n", "lda", "ldb", "ldc", "alpha", "beta", "seedA", "seedB", "seedC", "bump", NULL }; @@ -132,7 +207,7 @@ testing_zsymm_init( void ) test_zsymm.output = zsymm_output; test_zsymm.outchk = zsymm_outchk; test_zsymm.fptr_desc = testing_zsymm_desc; - test_zsymm.fptr_std = NULL; + test_zsymm.fptr_std = testing_zsymm_std; test_zsymm.next = NULL; testing_register( &test_zsymm ); diff --git a/testing/testing_zsyr2k.c b/testing/testing_zsyr2k.c index e2c57b26f65242725b17946e02ab36ebf4f8eca7..49f2047908ca69f0f748fa760cb04d7d04e821c2 100644 --- a/testing/testing_zsyr2k.c +++ b/testing/testing_zsyr2k.c @@ -2,7 +2,7 @@ * * @file testing_zsyr2k.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> z c d s * */ @@ -115,6 +116,82 @@ testing_zsyr2k_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zsyr2k_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDB = run_arg_get_int( args, "LDB", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDC = run_arg_get_int( args, "LDC", N ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + CHAMELEON_Complex64_t beta = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + double bump = testing_dalea(); + + /* Descriptors */ + int Am, An; + CHAMELEON_Complex64_t *A, *B, *C, *Cinit; + + bump = run_arg_get_double( args, "bump", bump ); + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_complex64( args, "beta", beta ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculate the dimensions according to the transposition */ + if ( trans == ChamNoTrans ) { + Am = N; + An = K; + } + else { + Am = K; + An = N; + } + + /* Create the matrices */ + A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*An*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fill the matrix with random values */ + CHAMELEON_zplrnt( Am, An, A, LDA, seedA ); + CHAMELEON_zplrnt( Am, An, B, LDB, seedB ); + CHAMELEON_zplgsy( bump, uplo, N, C, LDC, seedC ); + + /* Calculate the product */ + testing_start( &test_data ); + hres = CHAMELEON_zsyr2k( uplo, trans, N, K, alpha, A, LDA, B, LDB, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zher2k( K, N ) ); + + /* Check the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplgsy( bump, uplo, N, Cinit, LDC, seedC ); + + // hres += check_zsyrk( args, ChamSymmetric, uplo, trans, alpha, descA, descB, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( B ); + free( C ); + + return hres; +} + testing_t test_zsyr2k; const char *zsyr2k_params[] = { "mtxfmt", "nb", "trans", "uplo", "n", "k", "lda", "ldb", "ldc", "alpha", "beta", "seedA", @@ -135,7 +212,7 @@ testing_zsyr2k_init( void ) test_zsyr2k.output = zsyr2k_output; test_zsyr2k.outchk = zsyr2k_outchk; test_zsyr2k.fptr_desc = testing_zsyr2k_desc; - test_zsyr2k.fptr_std = NULL; + test_zsyr2k.fptr_std = testing_zsyr2k_std; test_zsyr2k.next = NULL; testing_register( &test_zsyr2k ); diff --git a/testing/testing_zsyrk.c b/testing/testing_zsyrk.c index dd70eed1425ee1e1b7dc18769de3065e64674c69..164d8ff5fed4aab73a3ddb7cba6c05a2cb5894e3 100644 --- a/testing/testing_zsyrk.c +++ b/testing/testing_zsyrk.c @@ -2,7 +2,7 @@ * * @file testing_zsyrk.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> z c d s * */ @@ -108,6 +109,77 @@ testing_zsyrk_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_zsyrk_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + int N = run_arg_get_int( args, "N", 1000 ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", ( ( trans == ChamNoTrans ) ? N : K ) ); + int LDC = run_arg_get_int( args, "LDC", N ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + CHAMELEON_Complex64_t beta = testing_zalea(); + CHAMELEON_Complex64_t bump = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedC = run_arg_get_int( args, "seedC", random() ); + + /* Descriptors */ + int Am, An; + CHAMELEON_Complex64_t *A, *C, *Cinit; + + alpha = run_arg_get_complex64( args, "alpha", alpha ); + beta = run_arg_get_complex64( args, "beta", beta ); + bump = run_arg_get_complex64( args, "bump", bump ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculates the dimensions according to the transposition */ + if ( trans == ChamNoTrans ) { + Am = N; + An = K; + } + else { + Am = K; + An = N; + } + + /* Creates the matrices */ + A = malloc( LDA*An*sizeof(CHAMELEON_Complex64_t) ); + C = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + CHAMELEON_zplrnt( Am, An, A, LDA, seedA ); + CHAMELEON_zplgsy( bump, uplo, N, C, LDC, seedC ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_zsyrk( uplo, trans, N, K, alpha, A, LDA, beta, C, LDC ); + test_data.hres = hres; + testing_stop( &test_data, flops_zsyrk( K, N ) ); + + /* Checks the solution */ + if ( check ) { + Cinit = malloc( LDC*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplgsy( bump, uplo, N, Cinit, LDC, seedC ); + + // hres += check_zsyrk( args, ChamSymmetric, uplo, trans, alpha, descA, NULL, + // beta, descCinit, descC ); + + free( Cinit ); + } + + free( A ); + free( C ); + + return hres; +} + testing_t test_zsyrk; const char *zsyrk_params[] = { "mtxfmt", "nb", "trans", "uplo", "n", "k", "lda", "ldc", "alpha", "beta", "seedA", "seedC", "bump", NULL }; @@ -127,7 +199,7 @@ testing_zsyrk_init( void ) test_zsyrk.output = zsyrk_output; test_zsyrk.outchk = zsyrk_outchk; test_zsyrk.fptr_desc = testing_zsyrk_desc; - test_zsyrk.fptr_std = NULL; + test_zsyrk.fptr_std = testing_zsyrk_std; test_zsyrk.next = NULL; testing_register( &test_zsyrk ); diff --git a/testing/testing_ztrmm.c b/testing/testing_ztrmm.c index 16cd4e1e8d0aa345075789c7d62364fbb95b5f8b..dced32a2e51699cbea23e26bbaae0455835279ea 100644 --- a/testing/testing_ztrmm.c +++ b/testing/testing_ztrmm.c @@ -2,7 +2,7 @@ * * @file testing_ztrmm.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> c d s * */ @@ -106,6 +107,75 @@ testing_ztrmm_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_ztrmm_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_side_t side = run_arg_get_side( args, "side", ChamLeft ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + cham_diag_t diag = run_arg_get_diag( args, "diag", ChamNonUnit ); + int N = run_arg_get_int( args, "N", 1000 ); + int K = run_arg_get_int( args, "K", N ); + int LDA = run_arg_get_int( args, "LDA", N ); + int LDB = run_arg_get_int( args, "LDB", N ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + + /* Descriptors */ + int Bm, Bn; + CHAMELEON_Complex64_t *A, *B, *Binit; + + alpha = run_arg_get_complex64( args, "alpha", alpha ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Calculates the dimensions according to the side */ + if ( side == ChamLeft ) { + Bm = N; + Bn = K; + } + else { + Bm = K; + Bn = N; + } + + /* Creates the matrices */ + A = malloc( LDA*N*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + CHAMELEON_zplrnt( K, N, A, LDA, seedA ); + CHAMELEON_zplrnt( Bm, Bn, B, LDB, seedB ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_ztrmm( side, uplo, trans, diag, N, K, alpha, A, LDA, B, LDB ); + test_data.hres = hres; + testing_stop( &test_data, flops_ztrmm( side, N, K ) ); + + /* Checks the solution */ + if ( check ) { + Binit = malloc( LDB*Bn*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplrnt( Bm, Bn, Binit, LDB, seedB ); + + // hres += check_ztrmm( args, CHECK_TRMM, side, uplo, trans, diag, + // alpha, descA, descB, descBinit ); + + free( Binit ); + } + + free( A ); + free( B ); + + return hres; +} + testing_t test_ztrmm; const char *ztrmm_params[] = { "mtxfmt", "nb", "trans", "side", "uplo", "diag", "n", "k", "lda", "ldb", "alpha", "seedA", "seedB", NULL }; @@ -125,7 +195,7 @@ testing_ztrmm_init( void ) test_ztrmm.output = ztrmm_output; test_ztrmm.outchk = ztrmm_outchk; test_ztrmm.fptr_desc = testing_ztrmm_desc; - test_ztrmm.fptr_std = NULL; + test_ztrmm.fptr_std = testing_ztrmm_std; test_ztrmm.next = NULL; testing_register( &test_ztrmm ); diff --git a/testing/testing_ztrsm.c b/testing/testing_ztrsm.c index 8ce17649194f3f1714be00136f42262881de2546..851df92b88960469fbcf3515ecbdd73f2b2ee037 100644 --- a/testing/testing_ztrsm.c +++ b/testing/testing_ztrsm.c @@ -2,7 +2,7 @@ * * @file testing_ztrsm.c * - * @copyright 2019-2021 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, + * @copyright 2019-2022 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** @@ -13,7 +13,8 @@ * @author Lucas Barros de Assis * @author Florent Pruvost * @author Mathieu Faverge - * @date 2020-11-19 + * @author Alycia Lisito + * @date 2022-02-04 * @precisions normal z -> c d s * */ @@ -97,6 +98,66 @@ testing_ztrsm_desc( run_arg_list_t *args, int check ) return hres; } +int +testing_ztrsm_std( run_arg_list_t *args, int check ) +{ + testdata_t test_data = { .args = args }; + int hres = 0; + + /* Read arguments */ + int nb = run_arg_get_int( args, "nb", 320 ); + cham_trans_t trans = run_arg_get_trans( args, "trans", ChamNoTrans ); + cham_side_t side = run_arg_get_side( args, "side", ChamLeft ); + cham_uplo_t uplo = run_arg_get_uplo( args, "uplo", ChamUpper ); + cham_diag_t diag = run_arg_get_diag( args, "diag", ChamNonUnit ); + int N = run_arg_get_int( args, "N", 1000 ); + int M = run_arg_get_int( args, "M", N ); + int Ak = ( side == ChamLeft ) ? M : N; + int LDA = run_arg_get_int( args, "LDA", Ak ); + int LDB = run_arg_get_int( args, "LDB", M ); + CHAMELEON_Complex64_t alpha = testing_zalea(); + int seedA = run_arg_get_int( args, "seedA", random() ); + int seedB = run_arg_get_int( args, "seedB", random() ); + + /* Descriptors */ + CHAMELEON_Complex64_t *A, *B, *Binit; + + alpha = run_arg_get_complex64( args, "alpha", alpha ); + + CHAMELEON_Set( CHAMELEON_TILE_SIZE, nb ); + + /* Creates the matrices */ + A = malloc( LDA*Ak*sizeof(CHAMELEON_Complex64_t) ); + B = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) ); + + /* Fills the matrix with random values */ + /* We bump a little bit the diagonal to make it stable */ + CHAMELEON_zplgsy( 2., uplo, N, A, LDA, seedA ); + CHAMELEON_zplrnt( M, N, B, LDB, seedB ); + + /* Calculates the product */ + testing_start( &test_data ); + hres = CHAMELEON_ztrsm( side, uplo, trans, diag, N, M, alpha, A, LDA, B, LDB ); + test_data.hres = hres; + testing_stop( &test_data, flops_ztrsm( side, M, N ) ); + + /* Checks the solution */ + if ( check ) { + Binit = malloc( LDB*N*sizeof(CHAMELEON_Complex64_t) ); + CHAMELEON_zplrnt( M, N, Binit, LDB, seedB ); + + // hres += check_ztrmm( args, CHECK_TRSM, side, uplo, trans, diag, + // alpha, descA, descB, descBinit ); + + free( Binit ); + } + + free( A ); + free( B ); + + return hres; +} + testing_t test_ztrsm; const char *ztrsm_params[] = { "mtxfmt", "nb", "side", "uplo", "trans", "diag", "m", "n", "lda", "ldb", "alpha", "seedA", "seedB", NULL }; @@ -116,7 +177,7 @@ testing_ztrsm_init( void ) test_ztrsm.output = ztrsm_output; test_ztrsm.outchk = ztrsm_outchk; test_ztrsm.fptr_desc = testing_ztrsm_desc; - test_ztrsm.fptr_std = NULL; + test_ztrsm.fptr_std = testing_ztrsm_std; test_ztrsm.next = NULL; testing_register( &test_ztrsm );