Commit 635f5be5 authored by COULAUD Olivier's avatar COULAUD Olivier

Add DL_POLY section

parent ebf2dd3f
......@@ -362,10 +362,10 @@ The kernel should be able to proceed usual FMM operator in a tree of height of s
The energy computed by molecular dynamics codes is given by
$$
U = \frac{1}{4 \pi\epsilon_0}\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|x_i-x_j\|}}}
$$
$$
and the force on atom $x_i$
$$
f(x_i) = \frac{1}{4 \pi\epsilon_0}\sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
f(x_i) = \frac{q_i }{4 \pi\epsilon_0}\sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
$$
\subsubsection{DL\_Poly comparisons}
DL\_POLY\_2 uses the following internal molecular units \\
......@@ -387,8 +387,8 @@ U = \frac{q_0^2}{4 \pi\epsilon_0 l_0}\sum_{i=0}^{N}{\sum_{j<i}{\frac{q_i q_j}{\|
$$
and the forces write
$$
f(x_i) = -\frac{q_0}{4 \pi\epsilon_0 l_0^2}\sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
= -C_{force}\sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
f(x_i) = -\frac{q_0^2}{4 \pi\epsilon_0 l_0^2} q_i \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
= -C_{force} q_i \sum_{j=0,i\neq j}^{N}{q_j\frac{x_i-x_j}{\|x_i-x_j\|^3}}
$$
The Energy conversion factor is $\gamma_0 = \frac{q_0^2}{4 \pi\epsilon_0 l_0}/E_0 = 138935.4835$. The energy unit is in Joules and if you want $kcal mol^{-1}$ unit the the factor becomes $\gamma_0/418.400$.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment