-
BRAMAS Berenger authoredBRAMAS Berenger authored
utestRotationDirectSeveralTime.cpp 8.90 KiB
// ===================================================================================
// Copyright ScalFmm 2011 INRIA
#include "../Src/Utils/FGlobal.hpp"
#include "../Src/Containers/FOctree.hpp"
#include "../Src/Containers/FVector.hpp"
#include "../Src/Kernels/Rotation/FRotationCell.hpp"
#include "../Src/Kernels/P2P/FP2PParticleContainerIndexed.hpp"
#include "../Src/Components/FSimpleLeaf.hpp"
#include "../Src/Kernels/Rotation/FRotationKernel.hpp"
#include "../Src/Files/FFmaGenericLoader.hpp"
#include "../Src/Core/FFmmAlgorithmThread.hpp"
#include "../Src/Core/FFmmAlgorithm.hpp"
#include "FUTester.hpp"
/** the test class run a simulation several times
* so it has to reset the cell information to ensure that results are correct.
*/
class TestRotationDirectSeveralTime : public FUTester<TestRotationDirectSeveralTime> {
/** The test method to factorize all the test based on different kernels */
template <class CellClass, class ContainerClass, class KernelClass, class LeafClass,
class OctreeClass, class FmmClass>
void RunTest(){
//
// Load particles
//
if(sizeof(FReal) == sizeof(float) ) {
std::cerr << "No input data available for Float "<< std::endl;
exit(EXIT_FAILURE);
}
const std::string parFile( (sizeof(FReal) == sizeof(float))?
"Test/DirectFloat.bfma":
"UTest/DirectDouble.bfma");
//
std::string filename(SCALFMMDataPath+parFile);
//
FFmaGenericLoader loader(filename);
if(!loader.isOpen()){
Print("Cannot open particles file.");
uassert(false);
return;
}
Print("Number of particles:");
Print(loader.getNumberOfParticles());
const int NbLevels = 4;
const int SizeSubLevels = 2;
//
FSize nbParticles = loader.getNumberOfParticles() ;
FmaR8W8Particle* const particles = new FmaR8W8Particle[nbParticles];
loader.fillParticle(particles,nbParticles);
//
// Create octree
//
OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
// Insert particle in the tree
//
for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
tree.insert(particles[idxPart].position , idxPart, particles[idxPart].physicalValue );
}
//
FReal energy= 0.0 , energyD = 0.0 ;
/////////////////////////////////////////////////////////////////////////////////////////////////
// Compute direct energy
/////////////////////////////////////////////////////////////////////////////////////////////////
for(int idx = 0 ; idx < loader.getNumberOfParticles() ; ++idx){
energyD += particles[idx].potential*particles[idx].physicalValue ;
}
// Run FMM
Print("Fmm...");
KernelClass kernels(NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
FmmClass algo(&tree,&kernels);
// execute FMM algorithm twice
for(int idxTime = 0 ; idxTime < 2 ; ++idxTime){
Print(idxTime);
algo.execute();
//
// Reset cells information
Print("Reset all cells in the Octree...");
tree.forEachCell([&](CellClass* cell){
cell->resetToInitialState();
});
// If we want to reset the leaf
//tree.forEachLeaf([&](LeafClass* leaf){
// leaf->resetToInitialState();
//}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Compare
/////////////////////////////////////////////////////////////////////////////////////////////////
Print("Compute Diff...");
FMath::FAccurater potentialDiff;
FMath::FAccurater fx, fy, fz;
{ // Check that each particle has been summed with all other
tree.forEachLeaf([&](LeafClass* leaf){
const FReal*const potentials = leaf->getTargets()->getPotentials();
const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
const FReal*const forcesX = leaf->getTargets()->getForcesX();
const FReal*const forcesY = leaf->getTargets()->getForcesY();
const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
const int nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
const FVector<int>& indexes = leaf->getTargets()->getIndexes();
for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
const int indexPartOrig = indexes[idxPart];
potentialDiff.add(particles[indexPartOrig].potential,potentials[idxPart]);
fx.add(particles[indexPartOrig].forces[0],forcesX[idxPart]);
fy.add(particles[indexPartOrig].forces[1],forcesY[idxPart]);
fz.add(particles[indexPartOrig].forces[2],forcesZ[idxPart]);
energy += potentials[idxPart]*physicalValues[idxPart];
}
});
}
delete[] particles;
// Print for information
Print("Potential diff is = ");
printf(" Pot L2Norm %e\n",potentialDiff.getL2Norm());
printf(" Pot RL2Norm %e\n",potentialDiff.getRelativeL2Norm());
printf(" Pot RMSError %e\n",potentialDiff.getRMSError());
Print("Fx diff is = ");
printf(" Fx L2Norm %e\n",fx.getL2Norm());
printf(" Fx RL2Norm %e\n",fx.getRelativeL2Norm());
printf(" Fx RMSError %e\n",fx.getRMSError());
Print("Fy diff is = ");
printf(" Fy L2Norm %e\n",fy.getL2Norm());
printf(" Fy RL2Norm %e\n",fy.getRelativeL2Norm());
printf(" Fy RMSError %e\n",fy.getRMSError());
Print("Fz diff is = ");
printf(" Fz L2Norm %e\n",fz.getL2Norm());
printf(" Fz RL2Norm %e\n",fz.getRelativeL2Norm());
printf(" Fz RMSError %e\n",fz.getRMSError());
FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm() + fz.getRelativeL2Norm() *fz.getRelativeL2Norm() );
printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
printf(" Energy Error = %.12e\n",FMath::Abs(energy-energyD));
printf(" Energy FMM = %.12e\n",FMath::Abs(energy));
printf(" Energy DIRECT = %.12e\n",FMath::Abs(energyD));
// Assert
const FReal MaximumDiffPotential = FReal(9e-3);
const FReal MaximumDiffForces = FReal(9e-2);
Print("Test1 - Error Relative L2 norm Potential ");
uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential); //1
Print("Test2 - Error RMS L2 norm Potential ");
uassert(potentialDiff.getRMSError() < MaximumDiffPotential); //2
Print("Test3 - Error Relative L2 norm FX ");
uassert(fx.getRelativeL2Norm() < MaximumDiffForces); //3
Print("Test4 - Error RMS L2 norm FX ");
uassert(fx.getRMSError() < MaximumDiffForces); //4
Print("Test5 - Error Relative L2 norm FY ");
uassert(fy.getRelativeL2Norm() < MaximumDiffForces); //5
Print("Test6 - Error RMS L2 norm FY ");
uassert(fy.getRMSError() < MaximumDiffForces); //6
Print("Test7 - Error Relative L2 norm FZ ");
uassert(fz.getRelativeL2Norm() < MaximumDiffForces); //8
Print("Test8 - Error RMS L2 norm FZ ");
uassert(fz.getRMSError() < MaximumDiffForces); //8
Print("Test9 - Error Relative L2 norm F ");
uassert(L2error < MaximumDiffForces); //9 Total Force
Print("Test10 - Relative error Energy ");
uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential); //10 Total Energy
}
/** If memstas is running print the memory used */
void PostTest() {
if( FMemStats::controler.isUsed() ){
std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
}
}
///////////////////////////////////////////////////////////
// The tests!
///////////////////////////////////////////////////////////
static const int P = 9;
/** Rotation */
void TestRotation(){
typedef FRotationCell<P> CellClass;
typedef FP2PParticleContainerIndexed<> ContainerClass;
typedef FRotationKernel<CellClass, ContainerClass, P > KernelClass;
typedef FSimpleLeaf<ContainerClass > LeafClass;
typedef FOctree< CellClass, ContainerClass , LeafClass > OctreeClass;
typedef FFmmAlgorithm<OctreeClass, CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;
RunTest<CellClass, ContainerClass, KernelClass, LeafClass, OctreeClass, FmmClass>();
}
///////////////////////////////////////////////////////////
// Set the tests!
///////////////////////////////////////////////////////////
/** set test */
void SetTests(){
AddTest(&TestRotationDirectSeveralTime::TestRotation,"Test Rotation Kernel");
std::cout << "WARNING THIS TEST NEEDS TO IMPLEMENT leaf->resetToInitialState();"<<std::endl;
}
};
// You must do this
TestClass(TestRotationDirectSeveralTime)