utestSpherical.cpp 10.1 KB
Newer Older
1
// See LICENCE file at project root
2

BRAMAS Berenger's avatar
BRAMAS Berenger committed
3
#include "Utils/FGlobal.hpp"
4

BRAMAS Berenger's avatar
BRAMAS Berenger committed
5 6
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
7

BRAMAS Berenger's avatar
BRAMAS Berenger committed
8 9
#include "Kernels/Spherical/FSphericalCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
10

BRAMAS Berenger's avatar
BRAMAS Berenger committed
11 12 13
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Spherical/FSphericalKernel.hpp"
#include "Kernels/Spherical/FSphericalRotationKernel.hpp"
14
#ifdef SCALFMM_USE_BLAS
BRAMAS Berenger's avatar
BRAMAS Berenger committed
15 16
#include "Kernels/Spherical/FSphericalBlasKernel.hpp"
#include "Kernels/Spherical/FSphericalBlockBlasKernel.hpp"
17
#endif
BRAMAS Berenger's avatar
BRAMAS Berenger committed
18
#include "Files/FFmaGenericLoader.hpp"
19

BRAMAS Berenger's avatar
BRAMAS Berenger committed
20
#include "Core/FFmmAlgorithm.hpp"
21 22 23 24 25 26 27 28 29 30 31 32

#include "FUTester.hpp"

/*
  In this test we compare the spherical fmm results and the direct results.
 */

/** the test class
 *
 */
class TestSphericalDirect : public FUTester<TestSphericalDirect> {
	/** The test method to factorize all the test based on different kernels */
33
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
	class OctreeClass, class FmmClass>
	void RunTest( const bool isBlasKernel){
		//
		const int DevP = 9;
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
51
		FFmaGenericLoader<FReal> loader(filename);
52 53 54 55 56 57 58 59 60 61 62 63
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
64
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
65 66 67 68 69

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
70
		FSphericalCell<FReal>::Init(DevP);
71 72 73
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
74
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
75
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
		}



		// Run FMM
		Print("Fmm...");
		//KernelClass kernels(NbLevels,loader.getBoxWidth());
		KernelClass kernels(DevP,NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

92
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
93
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
94 95 96 97 98
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
99 100
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
101 102 103 104 105 106 107 108
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
109 110
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
111

112 113
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
114 115 116 117
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	/** Classic */
	void TestSpherical(){
191
        typedef double FReal;
192
		typedef FSphericalCell<FReal>            CellClass;
193
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
194

195
		typedef FSphericalKernel< FReal, CellClass, ContainerClass >          KernelClass;
196

197 198
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
199 200 201

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

202
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
203 204 205 206 207
		OctreeClass, FmmClass>(false);
	}



208
#ifdef SCALFMM_USE_BLAS
209 210
	/** Blas */
	void TestSphericalBlas(){
211
        typedef double FReal;
212
		typedef FSphericalCell<FReal>            CellClass;
213
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
214

215
		typedef FSphericalBlasKernel<FReal, CellClass, ContainerClass >          KernelClass;
216

217 218
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
219 220 221

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

222
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
223 224 225 226 227
		OctreeClass, FmmClass>(true);
	}

	/** Block blas */
	void TestSphericalBlockBlas(){
228
        typedef double FReal;
229
		typedef FSphericalCell<FReal>            CellClass;
230
		typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
231

232
		typedef FSphericalBlockBlasKernel< FReal, CellClass, ContainerClass >          KernelClass;
233

234 235
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
236 237 238

		typedef FFmmAlgorithm<OctreeClass,  CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

239
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass,
240 241 242 243 244 245 246 247 248 249 250
		OctreeClass, FmmClass>(true);
	}
#endif

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestSphericalDirect::TestSpherical,"Test Spherical Kernel");
251
#ifdef SCALFMM_USE_BLAS
252 253 254 255 256 257 258 259 260 261 262 263
		AddTest(&TestSphericalDirect::TestSphericalBlas,"Test Spherical Blas Kernel");
		AddTest(&TestSphericalDirect::TestSphericalBlockBlas,"Test Spherical Block Blas Kernel");
#endif
	}
};


// You must do this
TestClass(TestSphericalDirect)