FUKernelTester.hpp 9.28 KB
Newer Older
1
// See LICENCE file at project root
2 3 4 5
#ifndef FUKERNELTESTER_HPP
#define FUKERNELTESTER_HPP

#include "ScalFmmConfig.h"
BRAMAS Berenger's avatar
BRAMAS Berenger committed
6
#include "Utils/FGlobal.hpp"
7 8 9

#include "FUTester.hpp"

BRAMAS Berenger's avatar
BRAMAS Berenger committed
10 11 12 13
#include "Containers/FOctree.hpp"
#include "Files/FFmaGenericLoader.hpp"
#include "Core/FFmmAlgorithm.hpp"
#include "Utils/FPoint.hpp"
14 15 16 17 18 19 20 21 22 23

#include <memory>
#include <functional>

/**
 * This class test a usual configuration against the direct computation.
 * Subclasses must provide the templates and a function to build
 * a kernel.
 * For Example :
 * RunTest<CellClass,ContainerClass,KernelClass,LeafClass,OctreeClass,FmmClass>(
24
 *       [&](int NbLevels, FReal boxWidth, FPoint<FReal> centerOfBox){
25 26 27 28 29 30 31 32 33 34 35 36
 *           return std::unique_ptr<KernelClass>(new KernelClass(NbLevels, boxWidth, centerOfBox));
 *       });
 * But it can be a static method or function.
 */
template <class TestClass>
class FUKernelTester : public FUTester<TestClass> {
public:
    // We should state that we are using FUTester Methods
    using FUTester<TestClass>::Print;
    using FUTester<TestClass>::uassert;

    // The run function is performing the test for the given configuration
37
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
38
              class LeafClass, class OctreeClass, class FmmClass>
39
    void RunTest(std::function<std::unique_ptr<KernelClass>(int NbLevels, FReal boxWidth, FPoint<FReal> centerOfBox, const MatrixKernelClass *const MatrixKernel)> GetKernelFunc)	{
40 41 42 43 44 45 46 47 48 49 50 51 52
        //
        // Load particles
        //
        if(sizeof(FReal) == sizeof(float) ) {
            std::cerr << "No input data available for Float "<< std::endl;
            exit(EXIT_FAILURE);
        }
        const std::string parFile( (sizeof(FReal) == sizeof(float))?
                                       "Test/DirectFloat.bfma":
                                       "UTest/DirectDouble.bfma");
        //
        std::string filename(SCALFMMDataPath+parFile);
        //
53
        FFmaGenericLoader<FReal> loader(filename);
54 55 56 57 58 59 60 61
        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels        = 4;
        const int SizeSubLevels = 2;


        FSize nbParticles = loader.getNumberOfParticles() ;
62
        FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
63 64 65 66 67 68 69

        loader.fillParticle(particles,nbParticles);
        //
        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
        //   Insert particle in the tree
        //
70
        for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
71 72 73
            tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
        }
        //
74 75 76
        // Create Matrix Kernel
        const MatrixKernelClass MatrixKernel; // FUKernelTester is only designed to work with 1/R, i.e. matrix kernel ctor takes no argument.
        //
77 78 79 80
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Run FMM computation
        /////////////////////////////////////////////////////////////////////////////////////////////////
        Print("Fmm...");
81
	std::unique_ptr<KernelClass> kernels(GetKernelFunc(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel));
82 83 84 85 86 87 88 89
        FmmClass algo(&tree,kernels.get());
        algo.execute();
        //
        FReal energy= 0.0 , energyD = 0.0 ;
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compute direct energy
        /////////////////////////////////////////////////////////////////////////////////////////////////

90
        for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
91 92 93 94 95 96
            energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
        }
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compare
        /////////////////////////////////////////////////////////////////////////////////////////////////
        Print("Compute Diff...");
97 98
        FMath::FAccurater<FReal> potentialDiff;
        FMath::FAccurater<FReal> fx, fy, fz;
99 100 101 102
        { // Check that each particle has been summed with all other

            tree.forEachLeaf([&](LeafClass* leaf){
                const FReal*const potentials        = leaf->getTargets()->getPotentials();
103 104 105 106 107 108
                const FReal*const physicalValues    = leaf->getTargets()->getPhysicalValues();
                const FReal*const forcesX           = leaf->getTargets()->getForcesX();
                const FReal*const forcesY           = leaf->getTargets()->getForcesY();
                const FReal*const forcesZ           = leaf->getTargets()->getForcesZ();
                const FSize nbParticlesInLeaf       = leaf->getTargets()->getNbParticles();
                const FVector<FSize>& indexes       = leaf->getTargets()->getIndexes();
109

110 111
                for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                    const FSize indexPartOrig = indexes[idxPart];
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                    potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                    fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                    fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                    fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                    energy   += potentials[idxPart]*physicalValues[idxPart];
                }
            });
        }

        delete[] particles;

        // Print for information

        Print("Potential diff is = ");
        printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
        printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
        printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);

        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy
    }



    /** If memstas is running print the memory used */
    void PostTest() override {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end "
                      << FMemStats::controler.getCurrentAllocated()
                      << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used "
                      << FMemStats::controler.getMaxAllocated()
                      << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used "
                      << FMemStats::controler.getTotalAllocated()
                      << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }
};

#endif // FUKERNELTESTER_HPP