sharedMemoryInterpolationAdaptiveFMM.hpp 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
// ===================================================================================
// Copyright ScalFmm 2015 INRIA, Olivier Coulaud, Berenger Bramas
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_FFT
// @FUSE_BLAS
//  ==== Git =====
//
// ================

/** \brief Uniform FMM example
 *
 * \file
 * \authors B. Bramas, O. Coulaud
 *
 * This program runs the FMM Algorithm with the interpolation kernel based on
 * uniform (grid points) interpolation (1/r kernel). It then compares the
 * results with a direct computation.
 */


#include <iostream>
#include <iomanip>

#include <cstdio>
#include <cstdlib>
#include <memory>
#include <string>

#ifdef _OPENMP
#include <omp.h>
#endif
#include "ScalFmmConfig.h"

#include "Files/FFmaGenericLoader.hpp"

#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"

#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Utils/FParameters.hpp"
#include "Utils/FParameterNames.hpp"

#ifdef _OPENMP
#include "Adaptive/FAdaptiveTask.hpp"
#endif
#include "Adaptive/FAdaptiveSequential.hpp"

#ifdef SCALFMM_USE_STARPU
#include "Adaptive/FAdaptiveStarPU.hpp"
#endif

#include "Adaptive/FTree.hpp"


// Types definition

// accuracy
typedef double FReal;
constexpr unsigned int ORDER = 7;

//
// Specification
using MatrixKernelClass = FInterpMatrixKernelR<FReal>;
//
//
/// definition of the common tree structure
//
using ContainerClass = FP2PParticleContainerIndexed<FReal>;
using CellClass      = FInterpolationCell<FReal, ORDER>;
using OctreeClass    = FTree<ContainerClass,CellClass>;
using LeafClass      = typename OctreeClass::node_t;

using KernelClass    = FInterpolationAdaptiveKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER> ;

using FmmClass       = FAdaptiveTask<OctreeClass, KernelClass>;
using FmmClassSeq    = FAdaptiveSequential<OctreeClass, KernelClass>;

#ifdef SCALFMM_USE_STARPU
using FmmClassStarPU = FAdaptiveStarPU<OctreeClass, KernelClass>;
#endif

namespace FPD = FParameterDefinitions;
namespace FParameterDefinitions {
    FParameterNames Density = {
        {"--max-density", "-d"}, "Maximun particle count per leaf."
    };
    FParameterNames PrintParticles = {
        {"--print-particles"}, "Print particles in tree."
    };
    FParameterNames UseSequential = {
        {"--seq"}, "Use sequential algorithm"
    };
    FParameterNames UseStarPU = {
        {"--starpu"}, "Use StarPU algorithm"
    };
}

int main(int argc, char* argv[]) {
    FHelpDescribeAndExit(
        argc, argv,
        "Driver for Lagrange interpolation kernel  (1/r kernel).",
        FPD::InputFile,
        FPD::OutputFile,
        FPD::NbThreads,
        FPD::Density,
        FPD::UseSequential,
        FPD::UseStarPU,
        );


    const std::string defaultFile(SCALFMMDataPath+"unitCubeXYZQ100.bfma" );

    const std::string filename =
        FParameters::getStr(argc, argv, FPD::InputFile.options, defaultFile.c_str());

    const unsigned int NbThreads =
        FParameters::getValue(argc, argv, FPD::NbThreads.options, omp_get_max_threads());
    omp_set_num_threads(NbThreads);

    const unsigned int maxDensity =
        FParameters::getValue(argc, argv, FPD::Density.options, 1U);

    {
        std::string indent("    ");
        auto w = std::setw(18);
        std::cout << "Parameters" << std::endl << std::left
                  << indent << w << "Input file   : " << filename      << std::endl
                  << indent << w << "Thread number: "    << NbThreads     << std::endl
                  << std::endl;
    }
    //
    // init timer
    FTic time;

    // open particle file
    FFmaGenericLoader<FReal> loader(filename);

    const MatrixKernelClass MatrixKernel;

    // init oct-tree
    OctreeClass tree({loader.getBoxWidth(), loader.getCenterOfBox()});
    tree.leaf_max_particle_count(maxDensity);
    if(FParameters::existParameter(argc, argv, FPD::PrintParticles.options)) {
        tree.print_particles = true;
    }

    { // -----------------------------------------------------
        std::cout << "Creating & Inserting " << loader.getNumberOfParticles()
                  << " particles ..." << std::endl;
        time.tic();
        //
        FPoint<FReal> position;
        FReal physicalValue = 0.0;
        //
        for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
            // Read particle per particle from file
            loader.fillParticle(&position,&physicalValue);
            // put particle in octree
            tree.insert(position, idxPart, physicalValue);
        }

        time.tac();
        std::cout << "Done  " << "(@Creating and Inserting Particles = "
                  << time.elapsed() << " s)." << std::endl;
        std::cout << "Tree height: " << tree.height() << std::endl;

        std::fstream("tree.txt", std::ios::out) << tree;
    } // -----------------------------------------------------

    { // -----------------------------------------------------
        std::cout << "\n" << interpolationType << "  FMM (ORDER= "<< ORDER << ") ... " << std::endl;
        time.tic();
        //
        //

        KernelClass kernel(
            static_cast<int>(tree.height()),
            loader.getBoxWidth(),
            loader.getCenterOfBox(),
            &MatrixKernel);


        unsigned int operations = FFmmNearAndFarFields;

        if(FParameters::existParameter(argc, argv, FPD::UseSequential.options)) {
            FmmClassSeq algo(&tree, &kernel);
            algo.execute(operations);   // FMM algorithm call
#ifdef SCALFMM_USE_STARPU
        } else if(FParameters::existParameter(argc, argv, FPD::UseStarPU.options)) {
            FmmClassStarPU algo(&tree, &kernel);
            algo.execute(operations);   // FMM algorithm call
#endif
        } else {
#ifdef SCALFMM_USE_OMP4
            FmmClass algo(&tree, &kernel);
            algo.execute(operations);   // FMM algorithm call
#endif
        }


        //
        //
        time.tac();
        std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s) ." << std::endl;
    }
    // -----------------------------------------------------
    //
    // Some output
    //
    //
    { // -----------------------------------------------------
        FSize N1=0, N2= loader.getNumberOfParticles()/2, N3= loader.getNumberOfParticles() -1; ;
        FReal energy =0.0 ;
        //
        //   Loop over all leaves
        //
        std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
        std::cout << std::scientific;
        std::cout.precision(10) ;

        tree.forEachLeaf([&](LeafClass* leaf){
            const FReal*const posX = leaf->getTargets()->getPositions()[0];
            const FReal*const posY = leaf->getTargets()->getPositions()[1];
            const FReal*const posZ = leaf->getTargets()->getPositions()[2];

            const FReal*const potentials = leaf->getTargets()->getPotentials();
            const FReal*const forcesX = leaf->getTargets()->getForcesX();
            const FReal*const forcesY = leaf->getTargets()->getForcesY();
            const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
            const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
            const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();

            const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();

            for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                const FSize indexPartOrig = indexes[idxPart];
                if ((indexPartOrig == N1) || (indexPartOrig == N2) || (indexPartOrig == N3)  ) {
                    std::cout << "Index "<< indexPartOrig <<"  potential  " << potentials[idxPart]
                                 << " Pos "<<posX[idxPart]<<" "<<posY[idxPart]<<" "<<posZ[idxPart]
                                    << "   Forces: " << forcesX[idxPart] << " " << forcesY[idxPart] << " "<< forcesZ[idxPart] <<std::endl;
                }
                energy += potentials[idxPart]*physicalValues[idxPart] ;
            }
        });
        std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
        std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;

    }
    // -----------------------------------------------------
    if(FParameters::existParameter(argc, argv, FPD::OutputFile.options)){
        std::string name(FParameters::getStr(argc,argv,FPD::OutputFile.options, "output.fma"));
        FFmaGenericWriter<FReal> writer(name) ;
        //
        FSize NbPoints = loader.getNumberOfParticles();
        FReal * particles ;
        particles = new FReal[8*NbPoints] ;
        memset(particles,0,8*NbPoints*sizeof(FReal));
        FSize j = 0 ;
        tree.forEachLeaf([&](LeafClass* leaf){
            //
            // Input
            const FReal*const posX = leaf->getTargets()->getPositions()[0];
            const FReal*const posY = leaf->getTargets()->getPositions()[1];
            const FReal*const posZ = leaf->getTargets()->getPositions()[2];
            const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
            const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
            //
            // Computed data
            const FReal*const potentials = leaf->getTargets()->getPotentials();
            const FReal*const forcesX = leaf->getTargets()->getForcesX();
            const FReal*const forcesY = leaf->getTargets()->getForcesY();
            const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
            //
            const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
            for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                j = 8*indexes[idxPart];
                particles[j]    = posX[idxPart] ;
                particles[j+1]  = posY[idxPart] ;
                particles[j+2]  = posZ[idxPart] ;
                particles[j+3]  = physicalValues[idxPart] ;
                particles[j+4]  = potentials[idxPart] ;
                particles[j+5]  = forcesX[idxPart] ;
                particles[j+6]  = forcesY[idxPart] ;
                particles[j+7]  = forcesZ[idxPart] ;
            }
        });

        writer.writeHeader( loader.getCenterOfBox(), loader.getBoxWidth() ,  NbPoints, sizeof(FReal), 8) ;
        writer.writeArrayOfReal(particles,  8 , NbPoints);

        delete[] particles;

        //
//        std::string name1( "output.fma");
//
        // FFmaGenericWriter<FReal> writer1(name1) ;
        // writer1.writeDistributionOfParticlesFromOctree(&tree,NbPoints) ;
    }


    return 0;
}