CutOffAlgorithm.cpp 9.66 KB
Newer Older
1
// See LICENCE file at project root
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

// ==== CMAKE =====
// @FUSE_FFT
// @FUSE_BLAS
//  ==== Git =====
// ================

#include <iostream>

#include <cstdio>
#include <cstdlib>
#include <string>

#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Utils/FParameters.hpp"
#include "Utils/FParameterNames.hpp"
//  Our particles loader
#include "Files/FFmaGenericLoader.hpp"
//
// Cells without local and multipole values
#include "Components/FBasicCell.hpp"
// Leaves 
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"  // For the predefined Matrix kernels
#include "Kernels/Interpolation/FCutOffKernel.hpp"        // Generic CutOff kernel defined with Matrix Kernel
// The classical Octree
#include "Containers/FOctree.hpp"

#ifdef _OPENMP
#include "Core/FFmmAlgorithmThread.hpp"
#else
#include "Core/FFmmAlgorithm.hpp"
#endif


#include <memory>

/**
 * This program runs the only the P2P Algorithm with the cutoff kernel (1/r) and compares the results with a direct computation.
 */
/// \file  CutOffAlhorithm.cpp
//!
//! \brief This program runs the only the P2P Algorithm with the cutoff kernel (1/r) and compares the results with a direct computation. 
//!  \authors O. Coulaud
//!
//!  This code is a short example to use ScalFMM with only P2P algorithm for the 1/r kernel


// Simply create particles and try the kernels
int main(int argc, char* argv[])
{
  FHelpDescribeAndExit(argc, argv,
		       "Driver for CutOff  kernel  (1/r kernel).",
		       FParameterDefinitions::InputFile, FParameterDefinitions::OctreeHeight,
		       FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::InputFile,FParameterDefinitions::OutputFile,
		       FParameterDefinitions::NbThreads);


  const std::string defaultFile(SCALFMMDataPath+"unitCubeXYZQ100.bfma" );
  const std::string filename       = FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options, defaultFile.c_str());
  const unsigned int TreeHeight    = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 2);
  const unsigned int SubTreeHeight = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 1);
  const unsigned int NbThreads     = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, 4);


#ifdef _OPENMP
  omp_set_num_threads(NbThreads);
  std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
#else
  std::cout << "\n>> Sequential version.\n" << std::endl;
#endif
  //
  std::cout <<     "Parameters  "<< std::endl
	    <<     "      Octree Depth      "<< TreeHeight <<std::endl
	    <<        "      SubOctree depth " << SubTreeHeight <<std::endl
	    <<     "      Input file  name: " <<filename <<std::endl
	    <<     "      Thread number:  " << NbThreads <<std::endl
	    <<std::endl;
  //
  // init timer
  FTic time;

  // open particle file
  ////////////////////////////////////////////////////////////////////
  //
  typedef double FReal;
  FFmaGenericLoader<FReal> loader(filename);
  //
  ////////////////////////////////////////////////////////////////////
  // begin CutOff kernel
  // accuracy
  // typedefs
  typedef FP2PParticleContainerIndexed<FReal>                 ContainerClass;
  typedef FSimpleLeaf<FReal,  ContainerClass >                LeafClass;
  typedef FBasicCell                                          CellClass;
  typedef FOctree<FReal, CellClass,ContainerClass,LeafClass>  OctreeClass;
  //
  typedef FInterpMatrixKernelR<FReal>                                          MatrixKernelClass;
  const MatrixKernelClass MatrixKernel;
  typedef FCutOffKernel<FReal,CellClass,ContainerClass,MatrixKernelClass>  KernelClass;
  //
#ifdef _OPENMP
  typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
  #else
  typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
#endif
  // init oct-tree
  OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());


  { // -----------------------------------------------------
    std::cout << "Creating & Inserting " << loader.getNumberOfParticles()
	      << " particles ..." << std::endl;
    std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
    time.tic();
    //
    FPoint<FReal> position;
    FReal physicalValue = 0.0;
    //
    for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
      //
      // Read particle per particle from file
      loader.fillParticle(&position,&physicalValue);
      //
      // put particle in octree
      tree.insert(position, idxPart, physicalValue);
    }

    time.tac();
    std::cout << "Done  " << "(@Creating and Inserting Particles = "
	      << time.elapsed() << " s) ." << std::endl;
  } // -----------------------------------------------------

  { // -----------------------------------------------------
    std::cout << " CutOff Algorithm  ... " << std::endl;

    time.tic();
    //
    std::unique_ptr<KernelClass> kernels(new KernelClass(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel));
    //
    FmmClass algo(&tree, kernels.get());
    //
    algo.execute( FFmmP2P);   // Here the call of the FMM algorithm
    //
    time.tac();
    std::cout << "Timers Far Field \n"
	      << "P2M " << algo.getTime(FAlgorithmTimers::P2MTimer) << " seconds\n"
	      << "M2M " << algo.getTime(FAlgorithmTimers::M2MTimer) << " seconds\n"
	      << "M2L " << algo.getTime(FAlgorithmTimers::M2LTimer) << " seconds\n"
	      << "L2L " << algo.getTime(FAlgorithmTimers::L2LTimer) << " seconds\n"
	      << "P2P and L2P " << algo.getTime(FAlgorithmTimers::NearTimer) << " seconds\n"
	      << std::endl;


    std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s) ." << std::endl;
  }
  // -----------------------------------------------------
  //
  // Some output
  //
  //
  { // -----------------------------------------------------
    FSize N1=0, N2= loader.getNumberOfParticles()/2, N3= loader.getNumberOfParticles() -1; ;
    FReal energy =0.0 ;
    //
    //   Loop over all leaves
    //
    std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
    std::cout << std::scientific;
    std::cout.precision(10) ;

    tree.forEachLeaf([&](LeafClass* leaf){
	const FReal*const posX = leaf->getTargets()->getPositions()[0];
	const FReal*const posY = leaf->getTargets()->getPositions()[1];
	const FReal*const posZ = leaf->getTargets()->getPositions()[2];

	const FReal*const potentials = leaf->getTargets()->getPotentials();
	const FReal*const forcesX = leaf->getTargets()->getForcesX();
	const FReal*const forcesY = leaf->getTargets()->getForcesY();
	const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();

	const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();

	for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
	  const FSize indexPartOrig = indexes[idxPart];
	  if ((indexPartOrig == N1) || (indexPartOrig == N2) || (indexPartOrig == N3)  ) {
	    std::cout << "Index "<< indexPartOrig <<"  potential  " << potentials[idxPart]
		      << " Pos "<<posX[idxPart]<<" "<<posY[idxPart]<<" "<<posZ[idxPart]
		      << "   Forces: " << forcesX[idxPart] << " " << forcesY[idxPart] << " "<< forcesZ[idxPart] <<std::endl;
	  }
	  energy += potentials[idxPart]*physicalValues[idxPart] ;
	}
      });
    std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
    std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;

  }
  // -----------------------------------------------------
  if(FParameters::existParameter(argc, argv, FParameterDefinitions::OutputFile.options)){
    std::string name(FParameters::getStr(argc,argv,FParameterDefinitions::OutputFile.options,   "output.fma"));
    FFmaGenericWriter<FReal> writer(name) ;
    //
    FSize NbPoints = loader.getNumberOfParticles();
    FReal * particles ;
    particles = new FReal[8*NbPoints] ;
    memset(particles,0,8*NbPoints*sizeof(FReal));
    FSize j = 0 ;
    tree.forEachLeaf([&](LeafClass* leaf){
	//
	// Input
	const FReal*const posX = leaf->getTargets()->getPositions()[0];
	const FReal*const posY = leaf->getTargets()->getPositions()[1];
	const FReal*const posZ = leaf->getTargets()->getPositions()[2];
	const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
	const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
	//
	// Computed data
	const FReal*const potentials = leaf->getTargets()->getPotentials();
	const FReal*const forcesX = leaf->getTargets()->getForcesX();
	const FReal*const forcesY = leaf->getTargets()->getForcesY();
	const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	//
	const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
	  j = 8*indexes[idxPart];
	  particles[j]      = posX[idxPart] ;
	  particles[j+1]  = posY[idxPart] ;
	  particles[j+2]  = posZ[idxPart] ;
	  particles[j+3]  = physicalValues[idxPart] ;
	  particles[j+4]  = potentials[idxPart] ;
	  particles[j+5]  =  forcesX[idxPart] ;
	  particles[j+6]  =  forcesY[idxPart] ;
	  particles[j+7]  =  forcesZ[idxPart] ;
	}
      });

    writer.writeHeader( loader.getCenterOfBox(), loader.getBoxWidth() ,  NbPoints, sizeof(FReal), 8) ;
    writer.writeArrayOfReal(particles,  8 , NbPoints);

    delete[] particles;

    //
    std::string name1( "output.fma");
    //
    FFmaGenericWriter<FReal> writer1(name1) ;
    writer1.writeDistributionOfParticlesFromOctree(&tree,NbPoints) ;
  }


  return 0;
}