utestLagrangeThread.cpp 9.55 KB
Newer Older
COULAUD Olivier's avatar
COULAUD Olivier committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas, Matthias Messner
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.  
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info". 
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_FFT
// ================

#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"

#include "FUTester.hpp"

#include "Components/FSimpleLeaf.hpp"


#include "../../Src/Kernels/Uniform/FUnifCell.hpp"
#include "../../Src/Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "../../Src/Kernels/Uniform/FUnifKernel.hpp"

#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
/*
  In this test we compare the TestLagrange fmm results with the direct results.
 */


/** the test class
 *
 */
class TestLagrange : public FUTester<TestLagrange> {

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	template <class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
	class LeafClass, class OctreeClass, class FmmClass>
	void RunTest()	{
		//
#ifdef _OPENMP
	std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
#else
	std::cout << "\n>> OpenMP test !!!\n" << std::endl;
	exit(EXIT_FAILURE);
#endif
	//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloatbfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
		FFmaGenericLoader loader(filename);
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels        = 4;
		const int SizeSubLevels = 2;

		// Create octree

		FSize nbParticles = loader.getNumberOfParticles() ;
		FmaR8W8Particle* const particles = new FmaR8W8Particle[nbParticles];

		loader.fillParticle(particles,nbParticles);
         //
		//   Insert particle in the tree
		//
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
			tree.insert(particles[idxPart].position , idxPart, particles[idxPart].physicalValue );
		}
		//
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Run FMM computation
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Fmm...");
		KernelClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);
		algo.execute();
		//0
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

		for(int idx = 0 ; idx <  loader.getNumberOfParticles()  ; ++idx){
			energyD +=  particles[idx].potential*particles[idx].physicalValue ;
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
		FMath::FAccurater potentialDiff;
		FMath::FAccurater fx, fy, fz;
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
				const int nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<int>& indexes      = leaf->getTargets()->getIndexes();

				for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const int indexPartOrig = indexes[idxPart];
					potentialDiff.add(particles[indexPartOrig].potential,potentials[idxPart]);
					fx.add(particles[indexPartOrig].forces[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].forces[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].forces[2],forcesZ[idxPart]);
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}

		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy


	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
										<< " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
										<< " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
										<< " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}


	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////


	/** TestUnifKernel */
	void TestUnifKernel(){
		const unsigned int ORDER = 6;
	    // typedefs
	    typedef FP2PParticleContainerIndexed<> ContainerClass;
	    typedef FSimpleLeaf< ContainerClass >  LeafClass;
	    typedef FInterpMatrixKernelR MatrixKernelClass;
	    typedef FUnifCell<ORDER> CellClass;
	    typedef FOctree<CellClass,ContainerClass,LeafClass> OctreeClass;
	    typedef FUnifKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER> KernelClass;
	    typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;

		// run test
		RunTest<CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass>();
	}

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestLagrange::TestUnifKernel,"Test Lagrange Kernel ");
	}
};


// You must do this
TestClass(TestLagrange)