ChebyshevInterpolationCmpAlgo.cpp 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
// ===================================================================================
// Copyright ScalFmm 2016 INRIA, Olivier Coulaud, Bérenger Bramas,
// Matthias Messner olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the
// FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
// An extension to the license is given to allow static linking of scalfmm
// inside a proprietary application (no matter its license).
// See the main license file for more details.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_BLAS
// ================

#include <iostream>

#include <cstdio>
#include <cstdlib>
#include <string>

#include "ScalFmmConfig.h"

#include "Files/FFmaGenericLoader.hpp"

#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebSymKernel.hpp"

#include "Components/FSimpleLeaf.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "Utils/FParameters.hpp"

#include "Containers/FOctree.hpp"

#ifdef _OPENMP
#include "Core/FFmmAlgorithmThread.hpp"
#include "Core/FFmmAlgorithmTask.hpp"
#include "Core/FFmmAlgorithmSectionTask.hpp"
#include "Core/FFmmAlgorithmThreadBalance.hpp"
#else
#include "Core/FFmmAlgorithm.hpp"
#endif

#include "Utils/FParameterNames.hpp"

/**
 * This program runs the FMM Algorithm with the Chebyshev kernel and compares the results with a direct computation.
 */
/// \file  ChebyshevInterpolationCmpAlgo.cpp
//!
//! \brief This program runs the FMM Algorithm with the interpolation kernel based on Chebyshev interpolation (1/r kernel)
//!  \authors  O. Coulaud
//!
//!  This code is a short example to use the Chebyshev Interpolation approach for the 1/r kernel
//
int main(int argc, char* argv[])
{
	const FParameterNames LocalOptionAlgo= { {"-algo"} , " Algorithm to run (basic, balanced, task, sectiontask)\n"};
	const FParameterNames LocalOptionCmp = {
			{"-cmp"} , "Use to check the result with the exact solution given in the input file\n" };
	FHelpDescribeAndExit(argc, argv,
			"Driver for Chebyshev interpolation kernel  (1/r kernel).",
			FParameterDefinitions::InputFile, FParameterDefinitions::OctreeHeight,
			FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::InputFile,
			FParameterDefinitions::OctreeSubHeight, FParameterDefinitions::OutputFile,
			FParameterDefinitions::NbThreads,
			LocalOptionAlgo,LocalOptionCmp);
/////////////////////////////////////////////////////////////////////////////////////
//   Set parameters
/////////////////////////////////////////////////////////////////////////////////////


	const std::string defaultFile(SCALFMMDataPath+"Data/unitCubeXYZQ100.bfma" );
	const std::string filename                = FParameters::getStr(argc,argv,FParameterDefinitions::InputFile.options, defaultFile.c_str());
	const unsigned int TreeHeight        = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeHeight.options, 5);
	const unsigned int SubTreeHeight  = FParameters::getValue(argc, argv, FParameterDefinitions::OctreeSubHeight.options, 2);
	const unsigned int NbThreads        = FParameters::getValue(argc, argv, FParameterDefinitions::NbThreads.options, 1);


#ifdef _OPENMP
	omp_set_num_threads(NbThreads);
	std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
#else
	std::cout << "\n>> Sequential version.\n" << std::endl;
#endif
	//
	std::cout <<     "Parameters  "<< std::endl
			<<     "      Octree Depth      "<< TreeHeight <<std::endl
			<<        "      SubOctree depth " << SubTreeHeight <<std::endl
			<<     "      Input file  name: " <<filename <<std::endl
			<<     "      Thread number:  " << NbThreads <<std::endl
			<<std::endl;
	//
	// init timer
	FTic time;

	/////////////////////////////////////////////////////////////////////
	////////////////////////////////////////////////////////////////////
	typedef double FReal;
	//
	////////////////////////////////////////////////////////////////////
	// begin Chebyshev kernel
	// accuracy
	const unsigned int ORDER = 7;
	// typedefs
	typedef FP2PParticleContainerIndexed<FReal>                     ContainerClass;
	typedef FSimpleLeaf<FReal, ContainerClass >                        LeafClass;
	typedef FChebCell<FReal,ORDER>                                         CellClass;
	typedef FOctree<FReal,CellClass,ContainerClass,LeafClass>  OctreeClass;
	//
	typedef FInterpMatrixKernelR<FReal>                                                                              MatrixKernelClass;
	const MatrixKernelClass MatrixKernel;
	typedef FChebSymKernel<FReal, CellClass,ContainerClass,MatrixKernelClass,ORDER>  KernelClass;
	//
	//  Different algorithms
#ifdef _OPENMP
	typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass>          ForFmmClass;
	typedef FFmmAlgorithmTask<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass>              TaskFmmClass;
	typedef FFmmAlgorithmSectionTask<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass>    SectionTaskFmmClass;
	typedef FFmmAlgorithmThreadBalance<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> ForBalFmmClass;
#else
	typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
#endif

	/////////////////////////////////////////////////////////////////////
	// open particle file
	////////////////////////////////////////////////////////////////////
	FFmaGenericLoader<FReal> loader(filename);
	if (loader.getNbRecordPerline() !=8 ){
		std::cerr << "File should contain 8 data to read (x,y,z,q,p,fx,fy,fz)\n";
		std::exit(EXIT_FAILURE);
	}
	FSize nbParticles = loader.getNumberOfParticles() ;
	FmaRWParticle<FReal,8,8> * const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
	//
	std::cout << "Creating & Inserting " << nbParticles << " particles ..." << std::endl;
	std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
	time.tic();
	//
	// open particle file
	////////////////////////////////////////////////////////////////////
	//
	loader.fillParticle(particles,nbParticles);
	time.tac();
	//
	// init oct-tree
	OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());
	//
	FReal  energyD = 0.0 ;
	/////////////////////////////////////////////////////////////////////////////////////////////////
	// Compute direct energy
	/////////////////////////////////////////////////////////////////////////////////////////////////

	for(int idx = 0 ; idx <  nbParticles  ; ++idx){
		tree.insert(particles[idx].getPosition() , idx, particles[idx].getPhysicalValue() );
		energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
	}
	std::cout << "Done  " << "(@Creating and Inserting Particles = " << time.elapsed() << " s) ." << std::endl;
	// -----------------------------------------------------

	{ // -----------------------------------------------------
		std::cout << "\nChebyshev FMM (ORDER="<< ORDER << ") ... " << std::endl;

		time.tic();
		//
		KernelClass kernels(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
		//
		// false : dynamic schedule.
		int inUserChunckSize = 10; // To specify the chunck size in the loops (-1 is static, 0 is N/p^2, otherwise i)
		std::string  algoStr  = FParameters::getStr(argc,argv,"-algo",  "basic");

		ForFmmClass              algo1(&tree, &kernels, inUserChunckSize);
        ForBalFmmClass          algo4(&tree, &kernels);
		TaskFmmClass            algo2(&tree, &kernels );
		SectionTaskFmmClass algo3(&tree, &kernels );

		FAbstractAlgorithm* algo  = nullptr;
		FAlgorithmTimers *timer  = nullptr;
		if( "basic" == algoStr) {
			algo    = &algo1 ;
			timer  =   &algo1;
		} else if( "balanced" == algoStr) {
			algo   = &algo4 ;
			timer  =   &algo4;
		} else if( "task" == algoStr) {
			algo   = &algo2 ;
			timer  =   &algo2;
		} else if ( "sectiontask" == algoStr ) {
			algo	  = &algo3 ;
			timer  =   &algo3;
		} else {
			std::cout << "Unknown algorithm: " << algoStr << std::endl;
			return 1;
		}
		std::cout << "Algorithm to check: "<< algoStr <<std::endl;
		time.tic();
		//  ---------------------------------------------
//		algo->execute(FFmmNearField);   // Here the call of the FMM algorithm
//		algo->execute(FFmmFarField);   // Here the call of the FMM algorithm
		algo->execute();   // Here the call of the FMM algorithm
		//  ---------------------------------------------
		time.tac();
		std::cout << "Timers Far Field \n"
				<< "P2M " << timer->getTime(FAlgorithmTimers::P2MTimer) << " seconds\n"
				<< "M2M " << timer->getTime(FAlgorithmTimers::M2MTimer) << " seconds\n"
				<< "M2L " << timer->getTime(FAlgorithmTimers::M2LTimer) << " seconds\n"
				<< "L2L " << timer->getTime(FAlgorithmTimers::L2LTimer) << " seconds\n"
				<< "P2P and L2P " << timer->getTime(FAlgorithmTimers::NearTimer) << " seconds\n"
				<< std::endl;


		std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s) ." << std::endl;
	}
	// -----------------------------------------------------
	//
	// Some output
	//
	//
	// -----------------------------------------------------
	FReal energy =0.0 ;
	//
	//   Loop over all leaves
	//
	if(FParameters::existParameter(argc, argv, "-cmp") ){
		std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
		std::cout << std::scientific;
		std::cout.precision(10) ;

		printf("Compute Diff...");
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz, f;
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials = leaf->getTargets()->getPotentials();
				const FReal*const forcesX = leaf->getTargets()->getForcesX();
				const FReal*const forcesY = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
				const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();

				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();

				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
					f.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					f.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					f.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});

			std::cout << energy << " " << energyD << std::endl;
			delete[] particles;

			f.setNbElements(nbParticles);
			std::cout << "FChebSymKernel Energy "  << FMath::Abs(energy-energyD) <<  "  Relative     "<< FMath::Abs(energy-energyD) / FMath::Abs(energyD) <<std::endl;
			std::cout << "FChebSymKernel Potential " << potentialDiff << std::endl;
			std::cout << "FChebSymKernel Fx " << fx << std::endl;
			std::cout << "FChebSymKernel Fy " << fy << std::endl;
			std::cout << "FChebSymKernel Fz " << fz << std::endl;
			std::cout << "FChebSymKernel F  " << f << std::endl;
			std::cout <<std::endl<<"Energy: "<< energy<<std::endl;
			std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;
		}

		// -----------------------------------------------------

	}
    if(FParameters::existParameter(argc, argv, FParameterDefinitions::OutputFile.options)){
        std::string name(FParameters::getStr(argc,argv,FParameterDefinitions::OutputFile.options,   "output.fma"));
        FFmaGenericWriter<FReal> writer(name) ;
        //
        FSize NbPoints = loader.getNumberOfParticles();
       FReal * particlesW ;
        particlesW = new FReal[8*NbPoints] ;
        memset(particlesW,0,8*NbPoints*sizeof(FReal));
        FSize j = 0 ;
        tree.forEachLeaf([&](LeafClass* leaf){
            //
            // Input
            const FReal*const posX = leaf->getTargets()->getPositions()[0];
            const FReal*const posY = leaf->getTargets()->getPositions()[1];
            const FReal*const posZ = leaf->getTargets()->getPositions()[2];
            const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
            const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
            //
            // Computed data
            const FReal*const potentials = leaf->getTargets()->getPotentials();
            const FReal*const forcesX = leaf->getTargets()->getForcesX();
            const FReal*const forcesY = leaf->getTargets()->getForcesY();
            const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
            //
            const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
            for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                j = 8*indexes[idxPart];
                particlesW[j]      = posX[idxPart] ;
                particlesW[j+1]  = posY[idxPart] ;
                particlesW[j+2]  = posZ[idxPart] ;
                particlesW[j+3]  = physicalValues[idxPart] ;
                particlesW[j+4]  = potentials[idxPart] ;
                particlesW[j+5]  =  forcesX[idxPart] ;
                particlesW[j+6]  =  forcesY[idxPart] ;
                particlesW[j+7]  =  forcesZ[idxPart] ;
            }
        });

        writer.writeHeader( loader.getCenterOfBox(), loader.getBoxWidth() ,  NbPoints, sizeof(FReal), 8) ;
        writer.writeArrayOfReal(particlesW,  8 , NbPoints);

        delete[] particles;

        //
        std::string name1( "output.fma");
//
        FFmaGenericWriter<FReal> writer1(name1) ;
        writer1.writeDistributionOfParticlesFromOctree(&tree,NbPoints) ;
    }
	return 0;
}