utestChebyshevThread.cpp 11.1 KB
Newer Older
1
// See LICENCE file at project root
COULAUD Olivier's avatar
COULAUD Olivier committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

// ==== CMAKE =====
// @FUSE_BLAS
// ================
#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"

#include "FUTester.hpp"

#include "Components/FSimpleLeaf.hpp"


#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Chebyshev/FChebKernel.hpp"
#include "Kernels/Chebyshev/FChebSymKernel.hpp"

#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
/*
  In this test we compare the Chebyschev fmm results and the direct results.
 */


/** the test class
 *
 */
class TestChebyshevDirect : public FUTester<TestChebyshevDirect> {

36 37 38 39 40 41 42 43
    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
              class LeafClass, class OctreeClass, class FmmClass>
    void RunTest()	{
        //
COULAUD Olivier's avatar
COULAUD Olivier committed
44
#ifdef _OPENMP
45
        std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
COULAUD Olivier's avatar
COULAUD Olivier committed
46
#else
47 48
        std::cout << "\n>> OpenMP test !!!\n" << std::endl;
        exit(EXIT_FAILURE);
COULAUD Olivier's avatar
COULAUD Olivier committed
49
#endif
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        //
        // Load particles
        //
        if(sizeof(FReal) == sizeof(float) ) {
            std::cerr << "No input data available for Float "<< std::endl;
            exit(EXIT_FAILURE);
        }
        const std::string parFile( (sizeof(FReal) == sizeof(float))?
                                       "Test/DirectFloatbfma":
                                       "UTest/DirectDouble.bfma");
        //
        std::string filename(SCALFMMDataPath+parFile);
        //
        FFmaGenericLoader<FReal> loader(filename);
        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels        = 4;
        const int SizeSubLevels = 2;

        // Create Matrix Kernel
        const MatrixKernelClass MatrixKernel; // FUKernelTester is only designed to work with 1/R, i.e. matrix kernel ctor takes no argument.

        // Load particles
        FSize nbParticles = loader.getNumberOfParticles() ;
        FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];

        loader.fillParticle(particles,nbParticles);

        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
        //
        //   Insert particle in the tree
        //
84
        for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
        }
        //
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Run FMM computation
        /////////////////////////////////////////////////////////////////////////////////////////////////
        Print("Fmm...");
        KernelClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
        FmmClass algo(&tree,&kernels);
        algo.execute();
        //0
        FReal energy= 0.0 , energyD = 0.0 ;
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compute direct energy
        /////////////////////////////////////////////////////////////////////////////////////////////////

101
        for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
        }
        /////////////////////////////////////////////////////////////////////////////////////////////////
        // Compare
        /////////////////////////////////////////////////////////////////////////////////////////////////
        Print("Compute Diff...");
        FMath::FAccurater<FReal> potentialDiff;
        FMath::FAccurater<FReal> fx, fy, fz;
        { // Check that each particle has been summed with all other

            tree.forEachLeaf([&](LeafClass* leaf){
                const FReal*const potentials        = leaf->getTargets()->getPotentials();
                const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
                const FReal*const forcesX            = leaf->getTargets()->getForcesX();
                const FReal*const forcesY            = leaf->getTargets()->getForcesY();
                const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
118 119
                const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
                const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
120

121 122
                for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
                    const FSize indexPartOrig = indexes[idxPart];
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                    potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                    fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                    fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                    fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                    energy   += potentials[idxPart]*physicalValues[idxPart];
                }
            });
        }

        delete[] particles;

        // Print for information

        Print("Potential diff is = ");
        printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
        printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
        printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);

        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy


    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
                      << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
                      << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
                      << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }


    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////


    /** TestChebKernel */
    void TestChebKernel(){
        typedef double FReal;
        const unsigned int ORDER = 6;
        typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
        typedef FChebCell<FReal,ORDER> CellClass;
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER> KernelClass;
        typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
216
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass>();
217 218 219 220 221 222 223 224 225 226 227 228 229 230
    }

    /** TestChebSymKernel */
    void TestChebSymKernel(){
        typedef double FReal;
        const unsigned int ORDER = 6;
        typedef FP2PParticleContainerIndexed<FReal> ContainerClass;
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
        typedef FChebCell<FReal,ORDER> CellClass;
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebSymKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER> KernelClass;
        typedef FFmmAlgorithmThread<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
231
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass>();
232 233 234 235 236 237 238 239 240 241 242 243 244
    }



    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){
        AddTest(&TestChebyshevDirect::TestChebKernel,"Test Chebyshev Kernel with one big SVD");
        AddTest(&TestChebyshevDirect::TestChebSymKernel,"Test Chebyshev Kernel with 16 small SVDs and symmetries");
    }
COULAUD Olivier's avatar
COULAUD Olivier committed
245 246 247 248 249 250 251 252 253
};


// You must do this
TestClass(TestChebyshevDirect)