utestRotationDirectSeveralTime.cpp 8.89 KB
Newer Older
BRAMAS Berenger's avatar
BRAMAS Berenger committed
1
#include "Utils/FGlobal.hpp"
2

BRAMAS Berenger's avatar
BRAMAS Berenger committed
3 4
#include "Containers/FOctree.hpp"
#include "Containers/FVector.hpp"
5

BRAMAS Berenger's avatar
BRAMAS Berenger committed
6 7
#include "Kernels/Rotation/FRotationCell.hpp"
#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
8

BRAMAS Berenger's avatar
BRAMAS Berenger committed
9 10
#include "Components/FSimpleLeaf.hpp"
#include "Kernels/Rotation/FRotationKernel.hpp"
11

BRAMAS Berenger's avatar
BRAMAS Berenger committed
12
#include "Files/FFmaGenericLoader.hpp"
13

BRAMAS Berenger's avatar
BRAMAS Berenger committed
14 15
#include "Core/FFmmAlgorithmThread.hpp"
#include "Core/FFmmAlgorithm.hpp"
16 17 18 19 20

#include "FUTester.hpp"


/** the test class run a simulation several times
COULAUD Olivier's avatar
COULAUD Olivier committed
21 22
 * so it has to reset the cell information to ensure that results are correct.
 */
23
class TestRotationDirectSeveralTime : public FUTester<TestRotationDirectSeveralTime> {
COULAUD Olivier's avatar
COULAUD Olivier committed
24
	/** The test method to factorize all the test based on different kernels */
25
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class LeafClass,
COULAUD Olivier's avatar
COULAUD Olivier committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
	class OctreeClass, class FmmClass>
	void RunTest(){
		//
		// Load particles
		//
		if(sizeof(FReal) == sizeof(float) ) {
			std::cerr << "No input data available for Float "<< std::endl;
			exit(EXIT_FAILURE);
		}
		const std::string parFile( (sizeof(FReal) == sizeof(float))?
				"Test/DirectFloat.bfma":
				"UTest/DirectDouble.bfma");
		//
		std::string filename(SCALFMMDataPath+parFile);
		//
41
		FFmaGenericLoader<FReal> loader(filename);
COULAUD Olivier's avatar
COULAUD Olivier committed
42 43 44 45 46 47 48 49 50 51 52 53
		if(!loader.isOpen()){
			Print("Cannot open particles file.");
			uassert(false);
			return;
		}
		Print("Number of particles:");
		Print(loader.getNumberOfParticles());

		const int NbLevels      = 4;
		const int SizeSubLevels = 2;
		//
		FSize nbParticles = loader.getNumberOfParticles() ;
54
		FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
COULAUD Olivier's avatar
COULAUD Olivier committed
55 56 57 58 59 60 61 62

		loader.fillParticle(particles,nbParticles);
		//
		// Create octree
		//
		OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
		//   Insert particle in the tree
		//
63
		for(FSize idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
64
		    tree.insert(particles[idxPart].getPosition() , idxPart, particles[idxPart].getPhysicalValue() );
COULAUD Olivier's avatar
COULAUD Olivier committed
65 66 67 68 69 70 71
		}
		//
		FReal energy= 0.0 , energyD = 0.0 ;
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compute direct energy
		/////////////////////////////////////////////////////////////////////////////////////////////////

72
		for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
73
		    energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
COULAUD Olivier's avatar
COULAUD Olivier committed
74 75 76 77 78 79 80
		}
		// Run FMM
		Print("Fmm...");
		KernelClass kernels(NbLevels,loader.getBoxWidth(), loader.getCenterOfBox());
		FmmClass algo(&tree,&kernels);

		// execute FMM algorithm twice
COULAUD Olivier's avatar
COULAUD Olivier committed
81 82
		int nbloops = 2;
		for(int idxTime = 0 ; idxTime < nbloops ; ++idxTime){
COULAUD Olivier's avatar
COULAUD Olivier committed
83 84 85 86
			Print(idxTime);
			algo.execute();
			//
			// Reset cells information
COULAUD Olivier's avatar
COULAUD Olivier committed
87 88 89 90 91 92 93 94 95
			if(idxTime != nbloops-1 ){
				Print("Reset all cells in the Octree...");
				tree.forEachCell([&](CellClass* cell){
					cell->resetToInitialState();
				});
				Print("Reset all leafs in the Octree...");

				//  If we want to reset the leaf
				tree.forEachLeaf([&](LeafClass* leaf){
COULAUD Olivier's avatar
COULAUD Olivier committed
96
					leaf->getTargets()->resetForcesAndPotential();
COULAUD Olivier's avatar
COULAUD Olivier committed
97 98
				});
			}
COULAUD Olivier's avatar
COULAUD Olivier committed
99 100 101 102 103
		}
		/////////////////////////////////////////////////////////////////////////////////////////////////
		// Compare
		/////////////////////////////////////////////////////////////////////////////////////////////////
		Print("Compute Diff...");
104 105
		FMath::FAccurater<FReal> potentialDiff;
		FMath::FAccurater<FReal> fx, fy, fz;
COULAUD Olivier's avatar
COULAUD Olivier committed
106 107 108 109 110 111 112 113
		{ // Check that each particle has been summed with all other

			tree.forEachLeaf([&](LeafClass* leaf){
				const FReal*const potentials        = leaf->getTargets()->getPotentials();
				const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
				const FReal*const forcesX            = leaf->getTargets()->getForcesX();
				const FReal*const forcesY            = leaf->getTargets()->getForcesY();
				const FReal*const forcesZ            = leaf->getTargets()->getForcesZ();
114 115
				const FSize nbParticlesInLeaf           = leaf->getTargets()->getNbParticles();
				const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
COULAUD Olivier's avatar
COULAUD Olivier committed
116

117 118
				for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
					const FSize indexPartOrig = indexes[idxPart];
119 120 121 122
					potentialDiff.add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
					fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
					fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
					fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
COULAUD Olivier's avatar
COULAUD Olivier committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
					energy   += potentials[idxPart]*physicalValues[idxPart];
				}
			});
		}
		delete[] particles;

		// Print for information

		Print("Potential diff is = ");
		printf("         Pot L2Norm     %e\n",potentialDiff.getL2Norm());
		printf("         Pot RL2Norm   %e\n",potentialDiff.getRelativeL2Norm());
		printf("         Pot RMSError   %e\n",potentialDiff.getRMSError());
		Print("Fx diff is = ");
		printf("         Fx L2Norm     %e\n",fx.getL2Norm());
		printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
		printf("         Fx RMSError   %e\n",fx.getRMSError());
		Print("Fy diff is = ");
		printf("        Fy L2Norm     %e\n",fy.getL2Norm());
		printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
		printf("        Fy RMSError   %e\n",fy.getRMSError());
		Print("Fz diff is = ");
		printf("        Fz L2Norm     %e\n",fz.getL2Norm());
		printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
		printf("        Fz RMSError   %e\n",fz.getRMSError());
		FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
		printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
		printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
		printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
		printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

		// Assert
		const FReal MaximumDiffPotential = FReal(9e-3);
		const FReal MaximumDiffForces     = FReal(9e-2);

		Print("Test1 - Error Relative L2 norm Potential ");
		uassert(potentialDiff.getRelativeL2Norm() < MaximumDiffPotential);    //1
		Print("Test2 - Error RMS L2 norm Potential ");
		uassert(potentialDiff.getRMSError() < MaximumDiffPotential);  //2
		Print("Test3 - Error Relative L2 norm FX ");
		uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
		Print("Test4 - Error RMS L2 norm FX ");
		uassert(fx.getRMSError() < MaximumDiffForces);                      //4
		Print("Test5 - Error Relative L2 norm FY ");
		uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
		Print("Test6 - Error RMS L2 norm FY ");
		uassert(fy.getRMSError() < MaximumDiffForces);                      //6
		Print("Test7 - Error Relative L2 norm FZ ");
		uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
		Print("Test8 - Error RMS L2 norm FZ ");
		uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
		Print("Test9 - Error Relative L2 norm F ");
		uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
		Print("Test10 - Relative error Energy ");
		uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy

	}

	/** If memstas is running print the memory used */
	void PostTest() {
		if( FMemStats::controler.isUsed() ){
			std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated() << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
			std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated() << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
			std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated() << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
		}
	}

	///////////////////////////////////////////////////////////
	// The tests!
	///////////////////////////////////////////////////////////

	static const int P = 9;

	/** Rotation */
	void TestRotation(){
197
        typedef double FReal;
198
		typedef FRotationCell<FReal,P>              CellClass;
199
		typedef FP2PParticleContainerIndexed<FReal>  ContainerClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
200

201
        typedef FRotationKernel<FReal, CellClass, ContainerClass, P >          KernelClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
202

203 204
		typedef FSimpleLeaf<FReal, ContainerClass >                     LeafClass;
		typedef FOctree<FReal, CellClass, ContainerClass , LeafClass >  OctreeClass;
COULAUD Olivier's avatar
COULAUD Olivier committed
205 206 207

		typedef FFmmAlgorithm<OctreeClass, CellClass, ContainerClass, KernelClass, LeafClass > FmmClass;

208
        RunTest<FReal, CellClass, ContainerClass, KernelClass, LeafClass, OctreeClass, FmmClass>();
COULAUD Olivier's avatar
COULAUD Olivier committed
209 210 211 212 213 214 215 216 217 218
	}

	///////////////////////////////////////////////////////////
	// Set the tests!
	///////////////////////////////////////////////////////////

	/** set test */
	void SetTests(){
		AddTest(&TestRotationDirectSeveralTime::TestRotation,"Test Rotation Kernel");
	}
219 220 221 222 223
};


// You must do this
TestClass(TestRotationDirectSeveralTime)