ChebyshevInterpolationMPIFMM.cpp 9.84 KB
Newer Older
COULAUD Olivier's avatar
COULAUD Olivier committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
// ===================================================================================
// Copyright ScalFmm 2011 INRIA, Olivier Coulaud, Berenger Bramas
// olivier.coulaud@inria.fr, berenger.bramas@inria.fr
// This software is a computer program whose purpose is to compute the FMM.
//
// This software is governed by the CeCILL-C and LGPL licenses and
// abiding by the rules of distribution of free software.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public and CeCILL-C Licenses for more details.
// "http://www.cecill.info".
// "http://www.gnu.org/licenses".
// ===================================================================================

// ==== CMAKE =====
// @FUSE_MPI
// @FUSE_BLAS
// ================

#include <iostream>
#include <stdexcept>
#include <cstdio>
#include <cstdlib>


#include "ScalFmmConfig.h"
#include "../../Src/Containers/FOctree.hpp"
#include "../../Src/Utils/FMpi.hpp"
#include "../../Src/Core/FFmmAlgorithmThreadProc.hpp"

#include "../../Src/Files/FFmaGenericLoader.hpp"
#include "../../Src/Files/FMpiFmaLoader.hpp"
#include "../../Src/Files/FMpiTreeBuilder.hpp"

#include "../../Src/BalanceTree/FLeafBalance.hpp"

#include "../../Src/Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "../../Src/Kernels/Chebyshev/FChebSymKernel.hpp"
#include "../../Src/Kernels/Chebyshev/FChebCell.hpp"

#include "../../Src/Components/FSimpleLeaf.hpp"
#include "../../Src/Kernels/P2P/FP2PParticleContainerIndexed.hpp"

#include "../../Src/Utils/FParameters.hpp"


/// \file ChebyshevInterpolationMPIFMM
//!
//! \brief This program runs the MPI FMM with Chebyshev interpolation of 1/r kernel
//!  \authors B. Bramas, O. Coulaud
//!
//!  This code is a short example to use the FMM Algorithm Proc with Chebyshev Interpolation for the 1/r kernel
//!
//!
//!  <b> General arguments:</b>
//!     \param   -help(-h)      to see the parameters available in this driver
//!     \param   -depth          The depth of the octree
//!     \param   -subdepth     Specifies the size of the sub octree
//!     \param   -t                   The number of threads
//!
//!     \param   -f name          Name of the particles file. The file have to be in our FMA format
//!     \param   -bin                 if the file is in binary mode
//!
//

void usage() {
  std::cout << "Driver for Chebyshev Interpolation kernel using MPI  (1/r kernel)" << std::endl;
  std::cout <<	 "Options  "<< std::endl
	    <<     "      -help         to see the parameters    " << std::endl
	    <<	  "      -depth       the depth of the octree   "<< std::endl
	    <<	  "      -subdepth  specifies the size of the sub octree   " << std::endl
	    <<     "      -f   name    name specifies the name of the particle distribution" << std::endl
	    <<     "      -t  n  specifies the number of threads used in the computations" << std::endl
	    <<     "  CMD >> mpirun -np nb_proc_needed ./ChebyshevInterpolationAlgorithm ....."  << std::endl;
}

// Simply create particles and try the kernels
int main(int argc, char* argv[])
{
	const std::string defaultFile(/*SCALFMMDataPath+*/"../Data/test20k.fma");
	const std::string filename                = FParameters::getStr(argc,argv,"-f", defaultFile.c_str());
	const unsigned int TreeHeight       = FParameters::getValue(argc, argv, "-depth", 5);
	const unsigned int SubTreeHeight  = FParameters::getValue(argc, argv, "-subdepth", 2);
	const unsigned int NbThreads        = FParameters::getValue(argc, argv, "-t", 1);
	if(FParameters::existParameter(argc, argv, "-h")||FParameters::existParameter(argc, argv, "-help")){
		usage() ;
		exit(-1);
	}
#ifdef _OPENMP
	omp_set_num_threads(NbThreads);
	std::cout << "\n>> Using " << omp_get_max_threads() << " threads.\n" << std::endl;
#else
	std::cout << "\n>> Sequential version.\n" << std::endl;
#endif
	//
	std::cout <<	 "Parameters  "<< std::endl
		  <<     "      Octree Depth      "<< TreeHeight <<std::endl
		  <<	 "      SubOctree depth "<< SubTreeHeight <<std::endl
		  <<     "      Input file  name: " <<filename <<std::endl
		  <<     "      Thread number:  " << NbThreads <<std::endl
		  <<std::endl;
	//init values for MPI
	FMpi app(argc,argv);
	//
	// init timer
	FTic time;

	FMpiFmaLoader loader(filename,app.global());

	if(!loader.isOpen()) throw std::runtime_error("Particle file couldn't be opened!") ;
	////////////////////////////////////////////////////////////////////



	// begin spherical kernel

	// accuracy
	const unsigned int ORDER = 7;
	// typedefs
	typedef FP2PParticleContainerIndexed<>                      ContainerClass;
	typedef FSimpleLeaf< ContainerClass >                       LeafClass;
	typedef FChebCell<ORDER>                                    CellClass;
	typedef FOctree<CellClass,ContainerClass,LeafClass>         OctreeClass;
	typedef FInterpMatrixKernelR                                MatrixKernelClass;

	typedef FChebSymKernel<CellClass,ContainerClass,MatrixKernelClass,ORDER>  KernelClass;

	//
	typedef FFmmAlgorithmThreadProc<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClassProc;

	// init oct-tree
	OctreeClass tree(TreeHeight, SubTreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());
	printf("There \n");
	

	{ // -----------------------------------------------------
	  std::cout << "Creating & Inserting " << loader.getNumberOfParticles()
		    << " particles ..." << std::endl;
	  std::cout << "\tHeight : " << TreeHeight << " \t sub-height : " << SubTreeHeight << std::endl;
	  time.tic();
	  //
	  
	  struct TestParticle{
	    int index;
	    FPoint position;
	    FReal physicalValue;
	    const FPoint& getPosition(){
	      return position;
	    }
	  };
	  TestParticle* particles = new TestParticle[loader.getNumberOfParticles()];
	  memset(particles, 0, (unsigned int) (sizeof(TestParticle) * loader.getNumberOfParticles()));
	  	  
	  //idx (in file) of the first part that will be used by this proc. 
	  int idxStart = loader.getStart();
	  printf("Proc %d idxStart %d \n",app.global().processId(),idxStart);
	  
	  for(int idxPart = 0 ; idxPart < loader.getNumberOfParticles() ; ++idxPart){
	    //Storage of the index (in the original file) of each part.
	    particles[idxPart].index = idxPart + idxStart;
	    // Read particles from file
	    loader.fillParticle(&particles[idxPart].position,&particles[idxPart].physicalValue);
	  }
	  		
	  FVector<TestParticle> finalParticles;
	  FLeafBalance balancer;
	  FMpiTreeBuilder< TestParticle >::ArrayToTree(app.global(), particles, loader.getNumberOfParticles(),
						 tree.getBoxCenter(),
						 tree.getBoxWidth(),
						 tree.getHeight(), &finalParticles,&balancer);

	  for(int idx = 0 ; idx < finalParticles.getSize(); ++idx){
	    tree.insert(finalParticles[idx].position,finalParticles[idx].index,finalParticles[idx].physicalValue);
	  }
	  printf("%d parts have been inserted in Tree \n",finalParticles.getSize());
	  delete[] particles;
	  
	  time.tac();
	  std::cout << "Done  " << "(@Creating and Inserting Particles = "
		    << time.elapsed() << "s)." << std::endl;
	} // -----------------------------------------------------

	{ // -----------------------------------------------------
	  std::cout << "\nChebyshev Interpolation  FMM Proc (P="<< ORDER << ") ... " << std::endl;
	  
	  time.tic();
	  //
	  // Here we use a pointer due to the limited size of the stack
	  //
	  KernelClass *kernels = new KernelClass(TreeHeight, loader.getBoxWidth(), loader.getCenterOfBox());
	  //
	  FmmClassProc algorithm(app.global(),&tree, kernels);
	  //
	  algorithm.execute();   // Here the call of the FMM algorithm
	  //
	  time.tac();
	  std::cout << "Done  " << "(@Algorithm = " << time.elapsed() << " s)." << std::endl;
	}
	// -----------------------------------------------------
	//
	// Some output
	//
	//
	{ // -----------------------------------------------------
	  long int N1=0, N2= loader.getTotalNumberOfParticles()/2, N3= (loader.getTotalNumberOfParticles()-1); ;
	  FReal energy =0.0 ;
	  //
	  //   Loop over all leaves
	  //
	  std::cout <<std::endl<<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl;
	  std::cout << std::scientific;
	  std::cout.precision(10) ;

	  tree.forEachLeaf([&](LeafClass* leaf){
	      const FReal*const posX = leaf->getTargets()->getPositions()[0];
	      const FReal*const posY = leaf->getTargets()->getPositions()[1];
	      const FReal*const posZ = leaf->getTargets()->getPositions()[2];
	      
	      const FReal*const potentials = leaf->getTargets()->getPotentials();
	      const FReal*const forcesX = leaf->getTargets()->getForcesX();
	      const FReal*const forcesY = leaf->getTargets()->getForcesY();
	      const FReal*const forcesZ = leaf->getTargets()->getForcesZ();
	      const int nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
	      const FReal*const physicalValues = leaf->getTargets()->getPhysicalValues();
	      
	      const FVector<int>& indexes = leaf->getTargets()->getIndexes();
	      
	      for(int idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
		const int indexPartOrig = indexes[idxPart];
		if ((indexPartOrig == N1) || (indexPartOrig == N2) || (indexPartOrig == N3)  ) {
		  std::cout << "Proc "<< app.global().processId() << " Index "<< indexPartOrig <<"  potential  " << potentials[idxPart]
			    << " Pos "<<posX[idxPart]<<" "<<posY[idxPart]<<" "<<posZ[idxPart]  
			    << "   Forces: " << forcesX[idxPart] << " " << forcesY[idxPart] << " "<< forcesZ[idxPart] <<std::endl;
		}
		energy += potentials[idxPart]*physicalValues[idxPart] ;
	      }
	    });
	  FReal gloEnergy = app.global().reduceSum(energy);
	  if(0 == app.global().processId()){
	    std::cout <<std::endl << "Proc "<< app.global().processId() << " Energy: "<< gloEnergy <<std::endl;
	    std::cout <<std::endl <<" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& "<<std::endl<<std::endl;
	  }
	}
	// -----------------------------------------------------


	return 0;
}