FFmmAlgorithmPeriodic.hpp 13 KB
Newer Older
1
// ===================================================================================
2 3 4 5 6 7 8 9
// Logiciel initial: ScalFmm Version 0.5
// Co-auteurs : Olivier Coulaud, Bérenger Bramas.
// Propriétaires : INRIA.
// Copyright © 2011-2012, diffusé sous les termes et conditions d’une licence propriétaire.
// Initial software: ScalFmm Version 0.5
// Co-authors: Olivier Coulaud, Bérenger Bramas.
// Owners: INRIA.
// Copyright © 2011-2012, spread under the terms and conditions of a proprietary license.
10
// ===================================================================================
11 12
#ifndef FFMMALGORITHMPERIODIC_HPP
#define FFMMALGORITHMPERIODIC_HPP
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

#include "../Utils/FGlobal.hpp"
#include "../Utils/FAssertable.hpp"
#include "../Utils/FDebug.hpp"
#include "../Utils/FTrace.hpp"
#include "../Utils/FTic.hpp"

#include "../Containers/FOctree.hpp"
#include "../Containers/FVector.hpp"


/**
* @author Berenger Bramas (berenger.bramas@inria.fr)
* @class FFmmAlgorithmPeriodic
* @brief
* Please read the license
*
* This class is a basic FMM algorithm
* It just iterates on a tree and call the kernels with good arguments.
*
* Of course this class does not deallocate pointer given in arguements.
*/
template<class OctreeClass, class ParticleClass, class CellClass, class ContainerClass, class KernelClass, class LeafClass>
class FFmmAlgorithmPeriodic : protected FAssertable{

    OctreeClass* const tree;       //< The octree to work on
    KernelClass* const kernels;    //< The kernels

    const int OctreeHeight;
43
    const int periodicLimit;
44 45 46 47 48 49 50

public:
    /** The constructor need the octree and the kernels used for computation
      * @param inTree the octree to work on
      * @param inKernels the kernels to call
      * An assert is launched if one of the arguments is null
      */
51
    FFmmAlgorithmPeriodic(OctreeClass* const inTree, KernelClass* const inKernels, const int inPeriodicLimit = 0)
52
        : tree(inTree) , kernels(inKernels), OctreeHeight(tree->getHeight()), periodicLimit(inPeriodicLimit) {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

        fassert(tree, "tree cannot be null", __LINE__, __FILE__);
        fassert(kernels, "kernels cannot be null", __LINE__, __FILE__);

        FDEBUG(FDebug::Controller << "FFmmAlgorithmPeriodic\n");
    }

    /** Default destructor */
    virtual ~FFmmAlgorithmPeriodic(){
    }

    /**
      * To execute the fmm algorithm
      * Call this function to run the complete algorithm
      */
    void execute(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );

        bottomPass();

        upwardPass();

75 76 77 78
        transferPass();

        processPeriodicLevels();

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        downardPass();

        directPass();
    }

private:
    /////////////////////////////////////////////////////////////////////////////
    // P2M
    /////////////////////////////////////////////////////////////////////////////

    /** P2M */
    void bottomPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Bottom Pass\n").write(FDebug::Flush) );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter);

        typename OctreeClass::Iterator octreeIterator(tree);

        // Iterate on leafs
        octreeIterator.gotoBottomLeft();
        do{
            // We need the current cell that represent the leaf
            // and the list of particles
            FDEBUG(computationCounter.tic());
            kernels->P2M( octreeIterator.getCurrentCell() , octreeIterator.getCurrentListSrc());
            FDEBUG(computationCounter.tac());
        } while(octreeIterator.moveRight());

        FDEBUG( FDebug::Controller << "\tFinished (@Bottom Pass (P2M) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
    }

    /////////////////////////////////////////////////////////////////////////////
    // Upward
    /////////////////////////////////////////////////////////////////////////////

    /** M2M */
    void upwardPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Upward Pass\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter);

        // Start from leal level - 1
        typename OctreeClass::Iterator octreeIterator(tree);
        octreeIterator.gotoBottomLeft();
        octreeIterator.moveUp();

        typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);

        // for each levels
        for(int idxLevel = OctreeHeight - 2 ; idxLevel > 0 ; --idxLevel ){
            // for each cells
            do{
                // We need the current cell and the child
                // child is an array (of 8 child) that may be null
                FDEBUG(computationCounter.tic());
                kernels->M2M( octreeIterator.getCurrentCell() , octreeIterator.getCurrentChild(), idxLevel);
                FDEBUG(computationCounter.tac());
            } while(octreeIterator.moveRight());

            avoidGotoLeftIterator.moveUp();
            octreeIterator = avoidGotoLeftIterator;// equal octreeIterator.moveUp(); octreeIterator.gotoLeft();
        }


        FDEBUG( FDebug::Controller << "\tFinished (@Upward Pass (M2M) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
    }

    /////////////////////////////////////////////////////////////////////////////
151
    // Transfer
152 153 154
    /////////////////////////////////////////////////////////////////////////////

    /** M2L L2L */
155
    void transferPass(){
156 157
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );

158 159 160 161 162 163 164
        FDEBUG( FDebug::Controller.write("\tStart Downward Pass (M2L)\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter);

        typename OctreeClass::Iterator octreeIterator(tree);
        typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);

165
        const CellClass* neighbors[343];
166 167 168 169 170

        // for each levels
        for(int idxLevel = 1 ; idxLevel < OctreeHeight ; ++idxLevel ){
            // for each cells
            do{
171
                const int counter = tree->getPeriodicInteractionNeighbors(neighbors, octreeIterator.getCurrentGlobalCoordinate(), idxLevel);
172
                FDEBUG(computationCounter.tic());
173
                if(counter) kernels->M2L( octreeIterator.getCurrentCell() , neighbors, counter, idxLevel);
174 175 176 177
                FDEBUG(computationCounter.tac());
            } while(octreeIterator.moveRight());
            avoidGotoLeftIterator.moveDown();
            octreeIterator = avoidGotoLeftIterator;
178
        }
179 180 181
        FDEBUG( FDebug::Controller << "\tFinished (@Downward Pass (M2L) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );
    }
182

183 184 185 186 187 188 189 190 191 192 193 194 195
    /////////////////////////////////////////////////////////////////////////////
    // Downward
    /////////////////////////////////////////////////////////////////////////////


    void downardPass(){ // second L2L
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Downward Pass (L2L)\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounter );

        typename OctreeClass::Iterator octreeIterator(tree);
        typename OctreeClass::Iterator avoidGotoLeftIterator(octreeIterator);
196

197 198 199 200 201 202 203 204 205 206 207 208
        const int heightMinusOne = OctreeHeight - 1;
        // for each levels exepted leaf level
        for(int idxLevel = 1 ; idxLevel < heightMinusOne ; ++idxLevel ){
            // for each cells
            do{
                FDEBUG(computationCounter.tic());
                kernels->L2L( octreeIterator.getCurrentCell() , octreeIterator.getCurrentChild(), idxLevel);
                FDEBUG(computationCounter.tac());
            } while(octreeIterator.moveRight());

            avoidGotoLeftIterator.moveDown();
            octreeIterator = avoidGotoLeftIterator;
209 210
        }

211 212 213
        FDEBUG( FDebug::Controller << "\tFinished (@Downward Pass (L2L) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation : " << computationCounter.cumulated() << " s\n" );

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    }

    /////////////////////////////////////////////////////////////////////////////
    // Direct
    /////////////////////////////////////////////////////////////////////////////

    /** P2P */
    void directPass(){
        FTRACE( FTrace::FFunction functionTrace(__FUNCTION__, "Fmm" , __FILE__ , __LINE__) );
        FDEBUG( FDebug::Controller.write("\tStart Direct Pass\n").write(FDebug::Flush); );
        FDEBUG(FTic counterTime);
        FDEBUG(FTic computationCounterL2P);
        FDEBUG(FTic computationCounterP2P);

        const int heightMinusOne = OctreeHeight - 1;

        typename OctreeClass::Iterator octreeIterator(tree);
        octreeIterator.gotoBottomLeft();
        // There is a maximum of 26 neighbors
        ContainerClass* neighbors[26];
        // for each leafs
        do{
            FDEBUG(computationCounterL2P.tic());
            kernels->L2P(octreeIterator.getCurrentCell(), octreeIterator.getCurrentListTargets());
            FDEBUG(computationCounterL2P.tac());
            // need the current particles and neighbors particles
241
            const int counter = tree->getPeriodicLeafsNeighbors(neighbors, octreeIterator.getCurrentGlobalCoordinate(),heightMinusOne);
242
            FDEBUG(computationCounterP2P.tic());
243
            kernels->P2P(octreeIterator.getCurrentGlobalIndex(),octreeIterator.getCurrentListTargets(), octreeIterator.getCurrentListSrc() , neighbors, counter);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            FDEBUG(computationCounterP2P.tac());
        } while(octreeIterator.moveRight());


        FDEBUG( FDebug::Controller << "\tFinished (@Direct Pass (L2P + P2P) = "  << counterTime.tacAndElapsed() << "s)\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation L2P : " << computationCounterL2P.cumulated() << " s\n" );
        FDEBUG( FDebug::Controller << "\t\t Computation P2P : " << computationCounterP2P.cumulated() << " s\n" );

    }

    /////////////////////////////////////////////////////////////////////////////
    // Periodic levels = levels <= 0
    /////////////////////////////////////////////////////////////////////////////

    /** Periodicity */
    void processPeriodicLevels(){
260 261 262 263 264
        if( !periodicLimit ){
            return;
        }

        CellClass upperCells[periodicLimit];
265 266 267 268 269

        // First M2M from level 1 to level 0
        {
            typename OctreeClass::Iterator octreeIterator(tree);
            octreeIterator.gotoLeft();
270
            kernels->M2M( &upperCells[0], octreeIterator.getCurrentBox(), 0);
271 272 273 274
        }
        // Then M2M from level 0 to level -LIMITE
        {
            CellClass* virtualChild[8];
275
            for(int idxLevel = 1 ; idxLevel < periodicLimit ; ++idxLevel){
276 277 278
                for(int idxChild = 0 ; idxChild < 8 ; ++idxChild){
                    virtualChild[idxChild] = &upperCells[idxLevel-1];
                }
279
                kernels->M2M( &upperCells[idxLevel], virtualChild, -idxLevel);
280 281 282 283 284 285
            }
        }
        // Then M2L at all level
        {
            // We say that we are in the child index 0
            // So we can compute one time the relative indexes
286 287 288 289 290 291 292
            const CellClass* neighbors[343];
            memset(neighbors, 0, sizeof(CellClass*) * 343);
            for(int idxX = -2 ; idxX <= 3 ; ++idxX){
                for(int idxY = -2 ; idxY <= 3 ; ++idxY){
                    for(int idxZ = -2 ; idxZ <= 3 ; ++idxZ){
                        if( FMath::Abs(idxX) > 1 || FMath::Abs(idxY) > 1 || FMath::Abs(idxZ) > 1){
                            neighbors[(((idxX+3)*7) + (idxY+3))*7 + (idxZ + 3)] = reinterpret_cast<const CellClass*>(~0);
293 294 295 296 297
                        }
                    }
                }
            }
            const int counter = 189;
298

299
            for(int idxLevel = 0 ; idxLevel < periodicLimit ; ++idxLevel ){
300 301 302 303
                for(int idxNeigh = 0 ; idxNeigh < 343 ; ++idxNeigh){
                    if(neighbors[idxNeigh]){
                        neighbors[idxNeigh] = &upperCells[idxLevel];
                    }
304
                }
305
                kernels->M2L( &upperCells[idxLevel] , neighbors, counter, -idxLevel);
306
            }
307

308 309 310 311 312 313
        }

        // Finally L2L until level 0
        {
            CellClass* virtualChild[8];
            memset(virtualChild, 0, sizeof(CellClass*) * 8);
314
            for(int idxLevel = periodicLimit - 1 ; idxLevel > 0  ; --idxLevel){
315
                virtualChild[0] = &upperCells[idxLevel-1];
316
                kernels->L2L( &upperCells[idxLevel], virtualChild, -idxLevel);
317 318 319 320 321 322 323
            }
        }

        // L2L from 0 to level 1
        {
            typename OctreeClass::Iterator octreeIterator(tree);
            octreeIterator.gotoLeft();
324
            kernels->L2L( &upperCells[0], octreeIterator.getCurrentBox(), 0);
325 326 327 328 329 330 331 332
        }

    }

};


#endif // FFMMALGORITHMPERIODIC_HPP