utestInterpolationMultiRhs.cpp 14 KB
Newer Older
1
// See LICENCE file at project root
2 3 4

// ==== CMAKE =====
// @FUSE_BLAS
COULAUD Olivier's avatar
COULAUD Olivier committed
5
// @FUSE_FFT
6
// @SCALFMM_PRIVATE
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// ==============
#include <array>

#include "ScalFmmConfig.h"
#include "Utils/FGlobal.hpp"

#include "Containers/FOctree.hpp"

#include "Files/FFmaGenericLoader.hpp"

#include "Core/FFmmAlgorithmThread.hpp"
#include "Core/FFmmAlgorithm.hpp"

#include "FUTester.hpp"

#include "Components/FSimpleLeaf.hpp"


#include "Kernels/Chebyshev/FChebCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
27
#include "Kernels/Chebyshev/FChebKernel.hpp"
28
#include "Kernels/Chebyshev/FChebSymKernel.hpp"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include "Kernels/Uniform/FUnifCell.hpp"
#include "Kernels/Interpolation/FInterpMatrixKernel.hpp"
#include "Kernels/Uniform/FUnifKernel.hpp"


#include "Kernels/P2P/FP2PParticleContainerIndexed.hpp"
/*
  In this test we compare the spherical FMM results and the direct results.
 */


/** the test class
 *
 */
class TestInterpolationKernel : public FUTester<TestInterpolationKernel> {

46 47 48 49
    ///////////////////////////////////////////////////////////
    // The tests!
    ///////////////////////////////////////////////////////////

50
    template <class FReal, class CellClass, class ContainerClass, class KernelClass, class MatrixKernelClass,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
              class LeafClass, class OctreeClass, class FmmClass, const int NVals>
    void RunTest()	{
        // Warning in make test the exec dir it Build/UTests
        // Load particles
        //
        // Load particles
        //
        if(sizeof(FReal) == sizeof(float) ) {
            std::cerr << "No input data available for Float "<< std::endl;
            exit(EXIT_FAILURE);
        }
        const std::string parFile( (sizeof(FReal) == sizeof(float))?
                                       "Test/DirectFloat.bfma":
                                       "UTest/DirectDouble.bfma");
        //
        std::string filename(SCALFMMDataPath+parFile);
        //
68
        FFmaGenericLoader<FReal> loader(filename);
69 70 71 72 73 74 75 76 77 78 79
        if(!loader.isOpen()){
            Print("Cannot open particles file.");
            uassert(false);
            return;
        }
        Print("Number of particles:");
        Print(loader.getNumberOfParticles());

        const int NbLevels        = 4;
        const int SizeSubLevels = 2;

80
        // std::cout << "\nInterpolation FMM (ORDER="<< ORDER << ") ... " << std::endl;
81 82 83 84 85

        // Create Matrix Kernel
        const MatrixKernelClass MatrixKernel; // FUKernelTester is only designed to work with 1/R, i.e. matrix kernel ctor takes no argument.
        //
        FSize nbParticles = loader.getNumberOfParticles() ;
86
        FmaRWParticle<FReal, 8,8>* const particles = new FmaRWParticle<FReal, 8,8>[nbParticles];
87 88

        loader.fillParticle(particles,nbParticles);
89

90 91
        // Create octree
        OctreeClass tree(NbLevels, SizeSubLevels, loader.getBoxWidth(), loader.getCenterOfBox());
92
        // Insert particle in the tree
93
        for(FSize idxPart = 0 ; idxPart < nbParticles ; ++idxPart){
94 95 96 97 98 99 100 101
            // Convert FReal[NVALS] to std::array<FReal,NVALS>
            std::array<FReal, (1+4*1)*NVals> physicalState;
            for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                physicalState[0*NVals+idxVals]= particles[idxPart].getPhysicalValue();
                physicalState[1*NVals+idxVals]=0.0;
                physicalState[2*NVals+idxVals]=0.0;
                physicalState[3*NVals+idxVals]=0.0;
                physicalState[4*NVals+idxVals]=0.0;
102
            }
103 104 105 106
            // put in tree
            tree.insert(particles[idxPart].getPosition(), idxPart, physicalState);
        }

107 108 109 110 111 112 113 114

        // Run FMM
        Print("Fmm...");
        KernelClass kernels(NbLevels, loader.getBoxWidth(), loader.getCenterOfBox(),&MatrixKernel);
        FmmClass algo(&tree,&kernels);
        algo.execute();
        //
        FReal energy= 0.0 , energyD = 0.0 ;
115
        for(FSize idx = 0 ; idx < loader.getNumberOfParticles()  ; ++idx){
116 117 118 119 120
            energyD +=  particles[idx].getPotential()*particles[idx].getPhysicalValue() ;
        }
        //
        // Compare
        Print("Compute Diff...");
121 122
        FMath::FAccurater<FReal> potentialDiff[NVals];
        FMath::FAccurater<FReal> fx, fy, fz;
123 124 125 126 127 128 129 130 131
        {
            tree.forEachLeaf([&](LeafClass* leaf){
                //
                for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
                    const FReal* const physicalValues = leaf->getTargets()->getPhysicalValues(idxVals);
                    const FReal*const potentials = leaf->getTargets()->getPotentials(idxVals);
                    const FReal*const forcesX = leaf->getTargets()->getForcesX(idxVals);
                    const FReal*const forcesY = leaf->getTargets()->getForcesY(idxVals);
                    const FReal*const forcesZ = leaf->getTargets()->getForcesZ(idxVals);
132 133
                    const FSize nbParticlesInLeaf = leaf->getTargets()->getNbParticles();
                    const FVector<FSize>& indexes = leaf->getTargets()->getIndexes();
134

135
                    for(FSize idxPart = 0 ; idxPart < nbParticlesInLeaf ; ++idxPart){
136

137
                        const FSize indexPartOrig = indexes[idxPart];
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                        //					std::cout << " index "<< indexPartOrig << "   "  << particles[indexPartOrig].getPotential() << "   " << potentials[idxPart] << std::endl;
                        potentialDiff[idxVals].add(particles[indexPartOrig].getPotential(),potentials[idxPart]);
                        //
                        fx.add(particles[indexPartOrig].getForces()[0],forcesX[idxPart]);
                        fy.add(particles[indexPartOrig].getForces()[1],forcesY[idxPart]);
                        fz.add(particles[indexPartOrig].getForces()[2],forcesZ[idxPart]);
                        //

                        energy   += potentials[idxPart]*physicalValues[idxPart];
                    }

                }
            });

        }
        delete[] particles;
        energy /=NVals;
        // Print for information
        double errorPotRL2=0.0, errorPotRMS=0.0;
        Print("Potential diff is = ");
        for(int idxVals = 0 ; idxVals < NVals ; ++idxVals){
            printf("   Charge: %d\n",		idxVals);
            printf("         Pot L2Norm     %e\n",potentialDiff[idxVals].getL2Norm());
            printf("         Pot RL2Norm   %e\n",potentialDiff[idxVals].getRelativeL2Norm());
            printf("         Pot RMSError   %e\n",potentialDiff[idxVals].getRMSError());
            errorPotRL2 = std::max(errorPotRL2, potentialDiff[idxVals].getRelativeL2Norm());
            errorPotRMS = std::max(errorPotRMS, potentialDiff[idxVals].getRMSError());
        }
        Print("Fx diff is = ");
        printf("         Fx L2Norm     %e\n",fx.getL2Norm());
        printf("         Fx RL2Norm   %e\n",fx.getRelativeL2Norm());
        printf("         Fx RMSError   %e\n",fx.getRMSError());
        Print("Fy diff is = ");
        printf("        Fy L2Norm     %e\n",fy.getL2Norm());
        printf("        Fy RL2Norm   %e\n",fy.getRelativeL2Norm());
        printf("        Fy RMSError   %e\n",fy.getRMSError());
        Print("Fz diff is = ");
        printf("        Fz L2Norm     %e\n",fz.getL2Norm());
        printf("        Fz RL2Norm   %e\n",fz.getRelativeL2Norm());
        printf("        Fz RMSError   %e\n",fz.getRMSError());
        FReal L2error = (fx.getRelativeL2Norm()*fx.getRelativeL2Norm() + fy.getRelativeL2Norm()*fy.getRelativeL2Norm()  + fz.getRelativeL2Norm() *fz.getRelativeL2Norm()  );
        printf(" Total L2 Force Error= %e\n",FMath::Sqrt(L2error)) ;
        printf("  Energy Error  =   %.12e\n",FMath::Abs(energy-energyD));
        printf("  Energy FMM    =   %.12e\n",FMath::Abs(energy));
        printf("  Energy DIRECT =   %.12e\n",FMath::Abs(energyD));

        // Assert
        const FReal MaximumDiffPotential = FReal(9e-3);
        const FReal MaximumDiffForces     = FReal(9e-2);

        Print("Test1 - Error Relative L2 norm Potential ");
        uassert(errorPotRL2 < MaximumDiffPotential);    //1
        Print("Test2 - Error RMS L2 norm Potential ");
        uassert(errorPotRMS< MaximumDiffPotential);  //2
        Print("Test3 - Error Relative L2 norm FX ");
        uassert(fx.getRelativeL2Norm()  < MaximumDiffForces);                       //3
        Print("Test4 - Error RMS L2 norm FX ");
        uassert(fx.getRMSError() < MaximumDiffForces);                      //4
        Print("Test5 - Error Relative L2 norm FY ");
        uassert(fy.getRelativeL2Norm()  < MaximumDiffForces);                       //5
        Print("Test6 - Error RMS L2 norm FY ");
        uassert(fy.getRMSError() < MaximumDiffForces);                      //6
        Print("Test7 - Error Relative L2 norm FZ ");
        uassert(fz.getRelativeL2Norm()  < MaximumDiffForces);                      //8
        Print("Test8 - Error RMS L2 norm FZ ");
        uassert(fz.getRMSError() < MaximumDiffForces);                                           //8
        Print("Test9 - Error Relative L2 norm F ");
        uassert(L2error              < MaximumDiffForces);                                            //9   Total Force
        Print("Test10 - Relative error Energy ");
        uassert(FMath::Abs(energy-energyD) /energyD< MaximumDiffPotential);                     //10  Total Energy


        // Compute multipole local rhs diff
211 212
        FMath::FAccurater<FReal> localDiff;
        FMath::FAccurater<FReal> multiPoleDiff;
213 214
        tree.forEachCell([&](CellClass* cell){
            for( int idxRhs = 1 ; idxRhs < NVals ; ++idxRhs){
215 216
                localDiff.add(cell->getLocalExpansionData().get(0), cell->getLocalExpansionData().get(idxRhs), cell->getLocalExpansionData().getVectorSize());
                multiPoleDiff.add(cell->getMultipoleData().get(0), cell->getMultipoleData().get(idxRhs), cell->getMultipoleData().getVectorSize());
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            }
        });
        Print("Local diff is = ");
        Print(localDiff.getL2Norm());
        Print(localDiff.getInfNorm());
        Print("Multipole diff is = ");
        Print(multiPoleDiff.getL2Norm());
        Print(multiPoleDiff.getInfNorm());

        uassert(localDiff.getL2Norm()  < 1e-10);
        uassert(localDiff.getInfNorm() < 1e-10);
        uassert(multiPoleDiff.getL2Norm()  < 1e-10);
        uassert(multiPoleDiff.getInfNorm() < 1e-10);
    }

    /** If memstas is running print the memory used */
    void PostTest() {
        if( FMemStats::controler.isUsed() ){
            std::cout << "Memory used at the end " << FMemStats::controler.getCurrentAllocated()
                      << " Bytes (" << FMemStats::controler.getCurrentAllocatedMB() << "MB)\n";
            std::cout << "Max memory used " << FMemStats::controler.getMaxAllocated()
                      << " Bytes (" << FMemStats::controler.getMaxAllocatedMB() << "MB)\n";
            std::cout << "Total memory used " << FMemStats::controler.getTotalAllocated()
                      << " Bytes (" << FMemStats::controler.getTotalAllocatedMB() << "MB)\n";
        }
    }


    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////


    /** TestUnifKernel */
    void TestUnifKernel(){
252
        typedef double FReal;
COULAUD Olivier's avatar
COULAUD Olivier committed
253
        const int NVals = 3;
254 255
        const unsigned int ORDER = 6 ;
        // run test
256
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
257 258


259
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
260
        typedef FSimpleLeaf<FReal, ContainerClass >  LeafClass;
261
        typedef FUnifCell<FReal,ORDER,1,1,NVals> CellClass;
262 263
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FUnifKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER,NVals> KernelClass;
264 265
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;

266
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
267 268 269 270
    }

    /** TestChebSymKernel */
    void TestChebSymKernel(){
271
        typedef double FReal;
COULAUD Olivier's avatar
COULAUD Olivier committed
272
        const int NVals = 3;
273
        const unsigned int ORDER = 6;
274
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
275 276
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
277
        typedef FChebCell<FReal,ORDER, 1, 1, NVals> CellClass;
278 279
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebSymKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
280 281
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
282
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
283 284
    }

285 286
    /** TestChebKernel */
    void TestChebKernel(){
287
        typedef double FReal;
288 289
        const int NVals = 3;
        const unsigned int ORDER = 6;
290
        typedef FP2PParticleContainerIndexed<FReal,1,1,NVals> ContainerClass;
291 292
        typedef FSimpleLeaf<FReal, ContainerClass> LeafClass;
        typedef FInterpMatrixKernelR<FReal> MatrixKernelClass;
293
        typedef FChebCell<FReal,ORDER, 1, 1, NVals> CellClass;
294 295
        typedef FOctree<FReal, CellClass,ContainerClass,LeafClass> OctreeClass;
        typedef FChebKernel<FReal,CellClass,ContainerClass,MatrixKernelClass,ORDER, NVals> KernelClass;
296 297
        typedef FFmmAlgorithm<OctreeClass,CellClass,ContainerClass,KernelClass,LeafClass> FmmClass;
        // run test
298
        RunTest<FReal,CellClass,ContainerClass,KernelClass,MatrixKernelClass,LeafClass,OctreeClass,FmmClass, NVals>();
299
    }
300 301 302 303 304 305 306 307

    ///////////////////////////////////////////////////////////
    // Set the tests!
    ///////////////////////////////////////////////////////////

    /** set test */
    void SetTests(){

308
        //AddTest(&TestInterpolationKernel::TestUnifKernel,"Test Lagrange/Uniform grid FMM");
309
        AddTest(&TestInterpolationKernel::TestChebSymKernel,"Test Symmetric Chebyshev Kernel with 16 small SVDs and symmetries");
310
        AddTest(&TestInterpolationKernel::TestChebKernel,"Test Chebyshev Kernel with 1 large SVD");
311

312
    }
313 314 315 316 317
};


// You must do this
TestClass(TestInterpolationKernel)